Journals
Mechanical Engineering
Risk Management
Computer Science
Archives
Journal of Robotics and Mechatronics
ISSN : | 0915-3942(Print) / 1883-8049(Online) |
---|---|
DOI : | 10.20965/jrm.issn.1883-8049 |
Editors-in-Chief : | Koichi Osuka (Osaka University) |
Deputy Editors-in-Chief : | Takayuki Tanaka (Hokkaido University) |
Akio Namiki (Chiba University) |
Indexed in ESCI, Scopus, Compendex (Ei), DOAJ
Journal Impact Factor: 1.1 (2022)
TOPICS
- Announcement
- [JRM] Call for Special Issues
- Call for Papers
- JRM Vol.36 No.5 (Oct. 2024) Special Issue on
“Robotics and Mechatronics Technology for Aerial Robots” - Call for Papers
- JRM Vol.36 No.4 (Aug. 2024) Special Issue on
“Robotics and Mechatronics Technology for Sports, Exercise, and Health Care” - Award
- JRM Best Paper Award 2022
- Most Downloaded
- JRM Most Downloaded Papers, Aug. 2023
- Forthcoming Issue
- JRM Vol.35 No.5 (Oct. 20th, 2023)
2023-09-19T15:16:47+0000
Vol.35 (2023)
No.4
(Aug)
Special Issue on Design of Swarm Intelligence Through Interdisciplinary Approach
Special Issue on Design of Swarm Intelligence Through Interdisciplinary Approach
Editorial: | p. 889 | |
Design of Swarm Intelligence Through Interdisciplinary Approach |
| |
Takeshi Kano and Yuichiro Sueoka | ||
In biological and social systems, a “swarm” refers to a group of individual units that behave as a single intelligent entity. “Swarm behavior,” the collective result of the local interactions among the group members, exhibits what is called “swarm intelligence.” By identifying the design principles of such swarm intelligence, we may be able to create swarm robots that are highly adaptable, fault tolerant, and dimensionally flexible. An interdisciplinary approach, including disciplines ranging from technology to biology to the mathematical sciences, for example, is used to elucidate the design principles of swarm intelligence. We believe that such knowledge will lead to transformations in the field of swarm robotics. This special issue highlights 19 exciting papers, including 13 research papers, five review papers, and one letter. Some papers focus on understanding the mechanism of real swarm phenomena, while the other papers focus on designing intelligent swarm systems. The keywords of the papers are as follows. • Swarm intelligence • Interdisciplinary approach • Decentralized control • Swarm robot • Collective behavior We would like to express our gratitude to all authors and reviewers, and we hope that this special issue contributes to future research and development in swarm intelligence. |
Review: | pp. 890-895 | ||
Review of Interdisciplinary Approach to Swarm Intelligence |
|
||
Takeshi Kano |
Review: | pp. 896-900 | ||
Swarm Behavior of Adult-Born Neurons During Migration in a Non-Permissive Environment |
|
||
Naoko Kaneko and Taisei Ishimaru |
Review: | pp. 901-910 | ||
Honey Bee Waggle Dance as a Model of Swarm Intelligence |
|
||
Ryuichi Okada, Hidetoshi Ikeno, Hitoshi Aonuma, Midori Sakura, and Etsuro Ito |
Paper: | pp. 911-917 | ||
Swarm Search Algorithm Based on Chemotactic Behaviors of Caenorhabditis elegans Nematodes |
|
||
Seiya Nomoto, Yuya Hattori, and Daisuke Kurabayashi |
Letter: | pp. 918-921 | ||
Group Chase and Escape with Chemotaxis |
|
||
Chikoo Oosawa |
Review: | pp. 922-930 | ||
Toward Comparative Collective Behavior to Discover Fundamental Mechanisms Underlying Behavior in Human Crowds and Nonhuman Animal Groups |
|
||
Hisashi Murakami, Masato S. Abe, and Yuta Nishiyama |
Paper: | pp. 931-937 | ||
Quantitative Analysis of the Coordinated Movement of Cells in a Freely Moving Cell Population |
|
||
Daiki Umetsu, Satoshi Yamaji, Daiki Wakita, and Takeshi Kano |
Paper: | pp. 938-947 | ||
Effect of Robotic Pile-Up Mechanism on Cooperative Transportation for Versatile Objects |
|
||
Yuichiro Sueoka, Wei Jie Yong, Naoto Takebe, Yasuhiro Sugimoto, and Koichi Osuka |
Paper: | pp. 948-956 | ||
Exploration of a Simple Navigation Method for Swarm Robots Pioneered by Heterogeneity |
|
||
Yuichiro Sueoka, Mitsuki Okada, Yusuke Tsunoda, Yasuhiro Sugimoto, and Koichi Osuka |
Paper: | pp. 957-968 | ||
Experimental Analysis of Shepherding-Type Robot Navigation Utilizing Sound-Obstacle-Interaction |
|
||
Yusuke Tsunoda, Le Trong Nghia, Yuichiro Sueoka, and Koichi Osuka |
Paper: | pp. 969-976 | ||
Cooperative Passing Based on Chaos Theory for Multiple Robot Swarms |
|
||
Kohei Yamagishi and Tsuyoshi Suzuki |
Paper: | pp. 977-987 | ||
Generating Collective Behavior of a Multi-Legged Robotic Swarm Using Deep Reinforcement Learning |
|
||
Daichi Morimoto, Yukiha Iwamoto, Motoaki Hiraga, and Kazuhiro Ohkura |
Paper: | pp. 988-996 | ||
When Less Is More in Embodied Evolution: Robotic Swarms Have Better Evolvability with Constrained Communication |
|
||
Motoaki Hiraga, Daichi Morimoto, Yoshiaki Katada, and Kazuhiro Ohkura |
Paper: | pp. 997-1006 | ||
MBEANN for Robotic Swarm Controller Design and the Behavior Analysis for Cooperative Transport |
|
||
Yoshiaki Katada, Takumi Hirokawa, Motoaki Hiraga, and Kazuhiro Ohkura |
Paper: | pp. 1007-1015 | ||
Evolutionary Design of Cooperative Transport Behavior for a Heterogeneous Robotic Swarm |
|
||
Razzaq Asad, Tomohiro Hayakawa, and Toshiyuki Yasuda |
Paper: | pp. 1016-1027 | ||
Consensus Building in Box-Pushing Problem by BRT Agent that Votes with Frequency Proportional to Profit |
|
||
Masao Kubo, Hiroshi Sato, and Akihiro Yamaguchi |
Paper: | pp. 1028-1037 | ||
Bi-Connectivity Control for Multi-Robot Network Considering Line-of-Sight Communication |
|
||
Toru Murayama and Aoi Iwasaki |
Paper: | pp. 1038-1046 | ||
Tension Control of a McKibben Pneumatic Actuator Using a Dynamic Quantizer |
|
||
Yasuhiro Sugimoto, Keisuke Naniwa, Daisuke Nakanishi, and Koichi Osuka |
Review: | pp. 1047-1051 | ||
Biomolecular Motor-Based Swarm Robot: An Innovation in Molecular Delivery |
|
||
Mousumi Akter and Akira Kakugo |
Regular Papers
Paper: | pp. 1053-1062 | ||
A Two-Step Fire Blanket Release Mechanism for Unmanned Aerial Vehicles |
|
||
Photchara Ratsamee, Thanarat Hanwong, Harn Sison, and Kaned Thungod |
Paper: | pp. 1063-1072 | ||
Modeling and Optimization of an Arc-Shaped Sliding Locomotion Robot with Wobbling Mass |
|
||
Cong Yan, Longchuan Li, Wataru Yanagimoto, Zhicheng Feng, and Isao Tokuda |
Paper: | pp. 1073-1083 | ||
Development of Action-Intention Indicator for Sidewalk Vehicles |
|
||
Tomoyuki Ohkubo, Riku Yamamoto, and Kazuyuki Kobayashi |
Paper: | pp. 1084-1091 | ||
Autonomous Navigation System for Multi-Quadrotor Coordination and Human Detection in Search and Rescue |
|
||
Jeane Marina Dsouza, Rayyan Muhammad Rafikh, and Vishnu G. Nair |
Paper: | pp. 1092-1100 | ||
Environmental Mapping of Underwater Structures Based on Remotely Operated Vehicles with Sonar System |
|
||
Bochen Ma, Tiancheng Du, and Tasuku Miyoshi |
Development Report: | pp. 1101-1108 | ||
Implementation Study of an Adhesion Hand with Stefan Adhesion |
|
||
Shoi Higa and Yuki Inoue |
No.3
(Jun)
Special Issue on Humancentric Robotic Technology and its Applications for Coexistence with Humans
Special Issue on Humancentric Robotic Technology and its Applications for Coexistence with Humans
Editorial: | pp. 531-532 | |
Humancentric Robotic Technology and its Applications for Coexistence with Humans |
| |
Shoichiro Fujisawa, Takayuki Tanaka, Masahiro Takaiwa, Toru Yamamoto, Kanya Tanaka, and Tamio Tanikawa | ||
In today’s super-aging society, it is essential to maintain and improve the quality of life of the elderly and to counter the shortage of young workers. Such problems are becoming evident in several areas, not just in the manufacturing sector but also in the fields of transport/mobility and healthcare/welfare. In these fields, there is an abundance of situations that cannot be solved simply by replacing human workers with robots. In the manufacturing sector, for instance, the transmission of skills and knowledge is threatened as the members of the baby boomer generation, who have both knowledge and experience, have reached retirement age at a time when the younger population is declining. Another example is the provision of care with human warmth at nursing sites. As we evolve toward Society 5.0, which is represented by a digital transformation and which encompasses elements such as digital twins, it will be critical to pioneer robotic technologies that allow robots to work with humans to achieve a prosperous coexistence and create an affluent society. For this special issue, which features humancentric robotic systems coexisting and working together with humans, we invited researchers to submit papers covering a wide range of topics, including element technologies as well as operating and evaluation methods. This special issue on Humancentric Robotic Technology and its Applications for Coexistence with Humans includes two review papers, 29 regular papers, and two development reports that cover the following topics. • Research on rehabilitation equipment and training systems • Research on power assist and support actuators • Research on human-robot interaction systems • Research on motor characteristics and the musculoskeletal system • Research on the utilization and development of vital signs and sensors • Research on IoT technology and smart technologies We thank all authors and reviewers of the papers, as well as the Editorial Board of the Journal of Robotics and Mechatronics, for their help with this special issue. |
Review: | pp. 533-546 | ||
Toward a Prosperous Future Where Humans and Robots Cooperate |
|
||
Masayo Iwai, Masaki Haruna, and Tamio Tanikawa |
Review: | pp. 547-555 | ||
Motor Characteristics of Human Adaptations to External Assistive Forces |
|
||
Wen Liang Yeoh, Jeewon Choi, Ping Yeap Loh, Osamu Fukuda, and Satoshi Muraki |
Paper: | pp. 556-564 | ||
Device Design of Ankle Joint Stretching System Controlled by the Healthy Side Ankle Joint Movement for Self-Rehabilitation |
|
||
Hideki Toda and Hiroaki Kawamoto |
Paper: | pp. 565-576 | ||
Development of Ankle-Joint Rehabilitation Device for Bedridden Patient Using Fan-Shaped Pneumatic Soft Actuator Driven at Low Pressure |
|
||
So Shimooka, Rui Suzuki, Takenori Uehara, Takahiro Hirayama, and Akio Gofuku |
Paper: | pp. 577-585 | ||
Development of Flexion Posture Formation Mechanism in Wearable Type of Flexor Tendon Rehabilitation Equipment |
|
||
Takeshi Ikeda, Yuki Matsutani, Masanori Sato, Seiji Furuno, and Fusaomi Nagata |
Paper: | pp. 586-600 | ||
Telerehabilitation System Based on OpenPose and 3D Reconstruction with Monocular Camera |
|
||
Keisuke Osawa, Yu You, Yi Sun, Tai-Qi Wang, Shun Zhang, Megumi Shimodozono, and Eiichiro Tanaka |
Paper: | pp. 601-611 | ||
A Stepper Motor-Powered Lower Limb Exoskeleton with Multiple Assistance Functions for Daily Use by the Elderly |
|
||
Yifan Fang, Bingkai Hou, Xiuyuan Wu, Yuntian Wang, Keisuke Osawa, and Eiichiro Tanaka |
Development Report: | pp. 612-621 | ||
Stair-Climbing Training System Using Visual VR Display for Total Knee Arthroplasty Patients |
|
||
Yuichi Kurita, Takumi Okumura, Ryota Imai, Tomohiko Nishigami, So Tanaka, and Takanori Taniguchi |
Paper: | pp. 622-632 | ||
Application of Noncircular Pulleys to Straight-Fiber-Type Pneumatic Artificial Muscle Manipulator |
|
||
Riku Tanaka, Teppei Abe, and Hiroki Tomori |
Paper: | pp. 633-640 | ||
Slide-Gate Type Multi-Port Switching Valve |
|
||
Takumi Kobayashi, Tetsuya Akagi, Shujiro Dohta, Feifei Cho, Takashi Shinohara, and Masashi Yokota |
Paper: | pp. 641-649 | ||
Variable Step Type Pneumatic Linear Stepping Actuator for Passive Exercise Device of Hip Joint |
|
||
Takashi Shinohara, Kota Oe, Tetsuya Akagi, Shujiro Dohta, Feifei Cho, Wataru Kobayashi, and So Shimooka |
Paper: | pp. 650-660 | ||
Design of an Extremely Lightweight Soft Actuator on a Pneumatic Corset for Support Lumbar Burden |
|
||
Yasutaka Nishioka, Masahiro Nishihara, Toshihiko Yasuda, and Mitsuhiro Yamano |
Paper: | pp. 661-668 | ||
Gait Analysis and Improvement of Hexapod Mobile Robot Using Tetrahedral-Shaped Pneumatic Soft Actuators |
|
||
Feifei Cho, Kenta Hase, Tetsuya Akagi, Shujiro Dohta, Takashi Shinohara, and Masashi Yokota |
Paper: | pp. 669-683 | ||
Development of an Ankle Assistive Robot with Instantly Gait-Adaptive Method |
|
||
Ming-Yang Xu, Yi-Fan Hua, Yun-Fan Li, Jyun-Rong Zhuang, Keisuke Osawa, Kei Nakagawa, Hee-Hyol Lee, Louis Yuge, and Eiichiro Tanaka |
Paper: | pp. 684-693 | ||
Support Effect and Simulation Evaluation of Lifting Motion Using Non-Wearing Type Power Assist Device |
|
||
Masashi Yokota and Masahiro Takaiwa |
Paper: | pp. 694-702 | ||
Parameter Setting and Driver Acceptability Evaluation of Steering Assistance System Using Impedance Control by Damping Ratio |
|
||
Soichiro Hayakawa and Ryojun Ikeura |
Paper: | pp. 703-710 | ||
Design of a Database-Driven Assist Control for a Hydraulic Excavator Considering Human Operation |
|
||
Kei Hiraoka, Toru Yamamoto, Masatoshi Kozui, Kazushige Koiwai, and Koji Yamashita |
Paper: | pp. 711-722 | ||
Advanced Musical Saw Manipulation by an Industrial Cooperative Humanoid Robot with Passive Sound Feedback |
|
||
Hiroaki Hanai, Atsuyuki Miura, Toshiki Hirogaki, and Eiichi Aoyama |
Paper: | pp. 723-733 | ||
Pocketable-Bones: Self-Augment Mobile Robot Mediating our Sociality |
|
||
Naoki Ohshima, Katsuya Iwasaki, Ryosuke Mayumi, Komei Hasegawa, and Michio Okada |
Paper: | pp. 734-742 | ||
Through-Hole Detection and Finger Insertion Planning as Preceding Motion for Hooking and Caging a Ring-Shaped Objects |
|
||
Koshi Makihara, Takuya Otsubo, and Satoshi Makita |
Paper: | pp. 743-750 | ||
Development of a Gaze-Driven Electric Wheelchair with 360° Camera and Novel Gaze Interface |
|
||
Junji Kawata, Jiro Morimoto, Yoshio Kaji, Mineo Higuchi, and Shoichiro Fujisawa |
Paper: | pp. 751-761 | ||
Convergent Conditions of Feedforward Control for Musculoskeletal Systems with Multi 1-DOF Joints Driven by Monoarticular and Biarticular Muscles |
|
||
Hiroaki Ochi, Koichi Komada, Kenji Tahara, and Hitoshi Kino |
Paper: | pp. 762-770 | ||
Musculoskeletal Model Capable of Reproducing Lumbar Extension Motion Strategy Based on the Equilibrium Point Hypothesis |
|
||
Masahiro Sato, Michihiro Yoshida, Takashi Kusaka, Yusuke Suzuki, and Takayuki Tanaka |
Paper: | pp. 771-779 | ||
Development of High Dynamic Range Six-Axis Force Sensor with Simple Structure |
|
||
Takamasa Kawahara and Toshiaki Tsuji |
Paper: | pp. 780-787 | ||
Indoor Positioning Scheme Using Off-the-Shelf Lighting Fixtures’ Fingerprints |
|
||
Hiroyuki Kobayashi |
Paper: | pp. 788-798 | ||
Estimation Model for Emotions Based on Pulse |
|
||
Jiro Morimoto, Akihiro Murakawa, Hiroki Fujita, Makoto Horio, Junji Kawata, Yoshio Kaji, Mineo Higuchi, and Shoichiro Fujisawa |
Development Report: | pp. 799-809 | ||
Excretion Detection Systems with Gas Sensors - Development of Excretion Detection Device with Non-Suction Utilizing Floor Cushion – |
|
||
Shohei Sugano, Kazushiro Tanimoto, Toshiki Kobayashi, and Yoshimi Ui |
Paper: | pp. 810-822 | ||
A Correction Method for Muscle Stiffness Sensors to Measure Transversus Abdominis Activity |
|
||
Shunsuke Nakamae, Takayuki Tanaka, and Koji Shimatani |
Paper: | pp. 823-833 | ||
Influence of Combined Vibration and Electrical Stimulation on Latency of Kinesthetic Illusion |
|
||
Koki Honda, Yasutaka Nakashima, Chen Hua, and Motoji Yamamoto |
Paper: | pp. 834-843 | ||
A Human-Centered and Adaptive Robotic System Using Deep Learning and Adaptive Predictive Controllers |
|
||
Sari Toyoguchi, Enrique Coronado, and Gentiane Venture |
Paper: | pp. 844-858 | ||
Investigation of the Development of Robots for Training Dialect Communication Listening in Nursing Care Situations: A Case Study of Mikawa Dialects |
|
||
Tomoe Ozeki, Tetsuya Mouri, and Hayate Fukui |
Paper: | pp. 859-866 | ||
Development of a Human-Centric System Using an IoT-Based Socially Embedded Robot Partner |
|
||
Jinseok Woo, Taiki Sato, and Yasuhiro Ohyama |
Paper: | pp. 867-878 | ||
Grid Map Correction for Fall Risk Alert System Using Smartphone |
|
||
Daigo Katayama, Kazuo Ishii, Shinsuke Yasukawa, Yuya Nishida, Satoshi Nakadomari, Koichi Wada, Akane Befu, and Chikako Yamada |
No.2
(Apr)
Special Issue on Navigation and Control Technologies for Autonomous Mobility
Special Issue on Navigation and Control Technologies for Autonomous Mobility
Editorial: | pp. 229-230 | |
Navigation and Control Technologies for Autonomous Mobility |
| |
Yuki Minami, Hiroshi Okajima, Kenji Sawada, and Kazuma Sekiguchi | ||
Autonomous mobility, as exemplified by self-driving cars, autonomous mobile robots, drones, etc., is essential to the acceleration and practical application of transportation services and the automation of delivery, guidance, security, and inspection. Therefore, in recent years, expectations have been building for autonomous mobility to grow as a technology that not only improves the convenience and comfort of transportation and the efficiency of logistics but also leads to solutions to various social problems. Various technological elements are required to ensure the safety and quality of autonomous mobility. For example, technology is needed to create environmental maps and automatically determine obstacles based on data acquired by cameras and sensors such as LiDAR. Technologies for planning appropriate routes and controlling robots safely and comfortably are also essential. This special issue highlights 24 exciting papers, including 20 research papers, three letters, and one development report. They are related to “recognition,” “decision and planning,” and “control” technologies for autonomous mobile robots, such as self-driving cars and drones. The papers’ keywords are as follows: • Collision avoidance, path planning, path tracking control • Motion control, attitude control • Measurement, position and posture estimation, modeling • Point cloud processing We would like to express our gratitude to all authors and reviewers, and we hope that this special issue contributes to future research and development in autonomous mobility. |
Paper: | pp. 231-239 | ||
Pedestrian Avoidance Method Considering Passenger Comfort for Autonomous Personal Mobility Vehicles |
|
||
Hiroshi Yoshitake, Yosuke Isono, and Motoki Shino |
Paper: | pp. 240-254 | ||
Study on Collision Avoidance Strategies Based on Social Force Model Considering Stochastic Motion of Pedestrians in Mixed Traffic Scenario |
|
||
Yan Zhang, Xun Shen, and Pongsathorn Raksincharoensak |
Paper: | pp. 255-261 | ||
Study on Control for Prevention of Collision Caused by Failure of Localization for Map-Based Automated Driving Vehicle |
|
||
Shun Nishimura and Manabu Omae |
Paper: | pp. 262-270 | ||
MGV Obstacle Avoidance Trajectory Generation Considering Vehicle Shape |
|
||
Yoshihide Arai, Takashi Sago, Yuki Ueyama, and Masanori Harada |
Paper: | pp. 271-278 | ||
Optimization of Drone-Based Surface-Wave Seismic Surveys Using a Multiple Traveling Salesman Problem |
|
||
Yohei Hamasato, Akinori Sakaguchi, Takeshi Tsuji, and Kaoru Yamamoto |
Development Report: | pp. 279-287 | ||
Development of Autonomous Moving Robot Using Appropriate Technology for Tsukuba Challenge |
|
||
Yuta Kanuki, Naoya Ohta, and Nobuaki Nakazawa |
Paper: | pp. 288-297 | ||
Gesture Interface and Transfer Method for AMR by Using Recognition of Pointing Direction and Object Recognition |
|
||
Takahiro Ikeda, Naoki Noda, Satoshi Ueki, and Hironao Yamada |
Paper: | pp. 298-307 | ||
Continuous-Time Receding-Horizon Estimation via Primal-Dual Dynamics on Vehicle Path-Following Control |
|
||
Kaito Sato and Kenji Sawada |
Paper: | pp. 308-316 | ||
Yaw-Rate Controller Tuning for Autonomous Driving: Virtual Internal Model Tuning Approach |
|
||
Motoya Suzuki and Shuichi Yahagi |
Paper: | pp. 317-327 | ||
Horizontal Fixed Attitude Flight of Quad Rotor Helicopter with Tilting Rotor |
|
||
Akitaka Imamura |
Paper: | pp. 328-337 | ||
Autonomous Flight Using UWB-Based Positioning System with Optical Flow Sensors in a GPS-Denied Environment |
|
||
Yoshiyuki Higashi and Kenta Yamazaki |
Letter: | pp. 338-342 | ||
Speed Control of a Mobile Robot Using Confidence of an Image Recognition Model |
|
||
Hiroto Kawahata, Yuki Minami, and Masato Ishikawa |
Letter: | pp. 343-346 | ||
Speed Control of Mobile Robots Using Vibration Stimuli from Bumpy Road Surface |
|
||
Ryosuke Mizoguchi, Yuki Minami, and Masato Ishikawa |
Paper: | pp. 347-361 | ||
Turning at Intersections Using Virtual LiDAR Signals Obtained from a Segmentation Result |
|
||
Miho Adachi, Kazufumi Honda, and Ryusuke Miyamoto |
Paper: | pp. 362-370 | ||
Body Stiffness Control for Using Body-Environment Interaction with a Closed-Link Deformable Mobile Robot |
|
||
Yuichiro Sueoka, Naoto Takebe, Yasuhiro Sugimoto, and Koichi Osuka |
Paper: | pp. 371-379 | ||
Azimuth Angle Detection Method Combining AKAZE Features and Optical Flow for Measuring Movement Accuracy |
|
||
Kazuteru Tobita and Kazuhiro Mima |
Letter: | pp. 380-386 | ||
Initial Localization of Mobile Robot Based on Expansion Resetting Without Manual Pose Adjustment in Robot Challenge Experiment |
|
||
Seo Takeda and Tomohiro Umetani |
Paper: | pp. 387-397 | ||
Localization System for Vehicle Navigation Based on GNSS/IMU Using Time-Series Optimization with Road Gradient Constrain |
|
||
Aoki Takanose, Kaito Kondo, Yuta Hoda, Junichi Meguro, and Kazuya Takeda |
Paper: | pp. 398-407 | ||
Detection and Localization of Thin Vertical Board for UAV Perching |
|
||
Takamasa Kominami, Hannibal Paul, and Kazuhiro Shimonomura |
Paper: | pp. 408-416 | ||
Differential Flatness-Based Parameter Estimation for Suspended Load Drones |
|
||
Wataru Eikyu, Kazuma Sekiguchi, and Kenichiro Nonaka |
Paper: | pp. 417-423 | ||
Aerodynamic Drag of a Tilt-Rotor UAV During Forward Flight in Rotary-Wing Mode |
|
||
Takateru Urakubo, Koki Wada, Kohtaro Sabe, Shinji Hirai, and Masafumi Miwa |
Paper: | pp. 424-434 | ||
Optimal Clustering of Point Cloud by 2D-LiDAR Using Kalman Filter |
|
||
Shuncong Shen, Mai Saito, Yuka Uzawa, and Toshio Ito |
Paper: | pp. 435-444 | ||
Error Covariance Estimation of 3D Point Cloud Registration Considering Surrounding Environment |
|
||
Koki Aoki, Tomoya Sato, Eijiro Takeuchi, Yoshiki Ninomiya, and Junichi Meguro |
Paper: | pp. 445-459 | ||
GPU-Accelerated 3D Normal Distributions Transform |
|
||
Anh Nguyen, Abraham Monrroy Cano, Masato Edahiro, and Shinpei Kato |
Regular Papers
Paper: | pp. 461-469 | ||
Application and Mechanical Evaluation of Polyarylate Fiber Rope in Wire Drive Mechanism of Robotic Surgical Instruments |
|
||
Kanta Nojima, Kotaro Tadano, and Daisuke Haraguchi |
Paper: | pp. 470-482 | ||
A Map Creation for LiDAR Localization Based on the Design Drawings and Tablet Scan Data |
|
||
Satoshi Ito, Ryutaro Kaneko, Takumi Saito, and Yuji Nakamura |
Paper: | pp. 483-491 | ||
Development of a Spherical Shell Robot with Rolling and Legged Locomotion |
|
||
Ryo Abe and Chisato Kanamori |
Paper: | pp. 492-500 | ||
Welding Line Detection Using Point Clouds from Optimal Shooting Position |
|
||
Tomohito Takubo, Erika Miyake, Atsushi Ueno, and Masaki Kubo |
Paper: | pp. 501-509 | ||
Vision-Based Robot Arm Control Interface for Retrieving Objects from the Floor |
|
||
Laijun Yang, Ryota Sakamoto, Norihiko Kato, and Ken’ichi Yano |
Paper: | pp. 510-520 | ||
Investigation of Obstacle Prediction Network for Improving Home-Care Robot Navigation Performance |
|
||
Mohamad Yani, Azhar Aulia Saputra, Wei Hong Chin, and Naoyuki Kubota |
No.1
(Feb)
Congratulations! JRM Best Paper Award 2022
Special Issue on Developments and Learning from the World Robot Challenge
Congratulations! JRM Best Paper Award 2022
Award: | pp. 1-2 | |
Congratulations! Journal of Robotics and Mechatronics Best Paper Award 2022 |
| |
Editorial Office | ||
We are pleased to announce that the 15th Journal of Robotics and Mechatronics Best Paper Award (JRM Best Paper Award 2022) has been decided by the JRM editorial committee. The following paper won the JRM Best Paper Award 2022, severely selected from among all 123 papers published in Vol.33 (2021). The Best Paper Award ceremony was held on December 23, 2022 in hybrid style (both on-site and online; venue: Gakushi-Kaikan, Tokyo, Japan), attended by the authors and JRM editorial committee members who took part in the selection process. The award winners were given certificates and a nearly US$1,000 honorarium. Editorial committee members who participated online also congratulated them through Zoom. We congratulate the winners and sincerely wish them success in the future.
JRM Best Paper Award 2022Title: 300-N Class Convex-Based Telescopic Manipulator and Trial for 3-DOF Parallel Mechanism Robot Authors: Takashi Kei Saito, Kento Onodera, Riku Seino, Takashi Okawa, and Yasushi Saito J. Robot. Mechatron., Vol.33, No.1, pp. 141-150, February 2021 |
Special Issue on Developments and Learning from the World Robot Challenge
Editorial: | p. 7 | |
Developments and Learning from the World Robot Challenge |
| |
Gentiane Venture | ||
The World Robot Challenge was organized to stimulate and gather findings in robotics and their applications to three important fields: Industrial Robotics, Service Robotics, and Disaster Robotics, which constituted three categories for the competition. Researchers and professionals from all over the world in the field of robotics were provided a unique opportunity to showcase their work by solving unprecedented problems, on the spot. Computer vision, robust control, navigation, and manipulation are some of the key elements to create robots that could solve the challenges proposed during the competition. This special issue provides some examples of the work developed and performed in that aim, that could serve for the future of robotics applications in the three designated fields but not only. The three first papers are the results of the convenience store challenge for Service Robotics. In this challenge, identifying objects and pose estimation of object are crucial for the acquisition of knowledge and robot manipulation, shelfing and logistics, as detailed in the first two papers. Robot’s navigation is also paramount for cleaning and operating in the human environment, such is the topic of the third paper. The Industrial Robotics challenge focuses on parts pick and place and assembly of complex elements. The fourth and 5th papers of this special issue deal with this topic. Finally the Disaster Robotics challenge presents the more versatile components as a disaster area may be of multiform and of very complex nature, depending of the nature of the disaster, whether it is indoor or outdoor etc. The last three papers of the special issue deal with such a various nature for plant inspection, for the control of robots in disaster area, or the rescue robot in confined spaces such as tunnels. We hope this collection of work carefully selected, will provide the reader with insights for the future developments of robots. |
Paper: | pp. 8-17 | ||
PYNet: Poseclass and Yaw Angle Output Network for Object Pose Estimation |
|
||
Kohei Fujita and Tsuyoshi Tasaki |
Paper: | pp. 18-29 | ||
Multifunctional Shelf and Magnetic Marker for Stock and Disposal Tasks in Convenience Stores |
|
||
Tomohito Takubo, Takeshi Nakamura, Riko Sugiyama, and Atsushi Ueno |
Paper: | pp. 30-42 | ||
Coverage Motion Planning Based on 3D Model’s Curved Shape for Home Cleaning Robot |
|
||
Yuki Sakata and Takuo Suzuki |
Development Report: | pp. 43-50 | ||
Autonomous Pick and Place for Mechanical Assembly WRS 2020 Assembly Challenge |
|
||
Nahid Sidki |
Paper: | pp. 51-64 | ||
Development of a Flexible Assembly System for the World Robot Summit 2020 Assembly Challenge |
|
||
Lizhou Xu, Farshad Nozad Heravi, Marcel Gabriel Lahoud, Gabriele Marchello, Mariapaola D’Imperio, Syed Haider Jawad Abidi, Mohammad Farajtabar, Michele Martini, Silvio Cocuzza, Massimiliano Scaccia, and Ferdinando Cannella |
Development Report: | pp. 65-73 | ||
Development of Automatic Inspection Systems for WRS2020 Plant Disaster Prevention Challenge Using Image Processing |
|
||
Yuya Shimizu, Tetsushi Kamegawa, Yongdong Wang, Hajime Tamura, Taiga Teshima, Sota Nakano, Yuki Tada, Daiki Nakano, Yuichi Sasaki, Taiga Sekito, Keisuke Utsumi, Rai Nagao, and Mizuki Semba |
Development Report: | pp. 74-84 | ||
Concept and Implementation of the Intuitive Controller MISORI-2: Development of a Robot Manual Controller Without Laptop and Game Controller |
|
||
Keita Nakamura, Junichi Yamazaki, and Makoto Yashiro |
Development Report: | pp. 85-98 | ||
Disaster Rescue via Multi-Robot Collaboration: Development, Control, and Deployment |
|
||
Yutaka Watanobe, Raihan Kabir, Ryuma Aoba, Ayato Ohashi, Shunsuke Ogata, Mizuki Shiga, Kota Tsuruno, Tsuyoshi Anazawa, and Keitaro Naruse |
Regular Papers
Paper: | pp. 99-112 | ||
Study on an Add-on Type Electric Wheelchair Using Active Caster with the Differential Mechanism |
|
||
Taisei Nakayama and Masayoshi Wada |
Paper: | pp. 113-124 | ||
Development of Pneumatic Artificial Rubber Muscle Using Segmented Shape-Memory Polymer Sheets |
|
||
Kazuto Takashima, Yuta Okamura, Daiki Iwamoto, Toshiro Noritsugu, and Toshiharu Mukai |
Paper: | pp. 125-135 | ||
Projection Mapping-Based Interactive Gimmick Picture Book with Visual Illusion Effects |
|
||
Sayaka Toda and Hiromitsu Fujii |
Paper: | pp. 136-144 | ||
Autonomous Motion Control of a Mobile Robot Using Marker Recognition via Deep Learning in GPS-Denied Environments |
|
||
Takashi Shimoda, Shoya Koga, and Kazuya Sato |
Paper: | pp. 145-152 | ||
Training Simulator for Manual Lathe Operation Using Motion Capture – Addition of Teaching Function and Evaluation of Training Effectiveness – |
|
||
Nobuyoshi Hashimoto |
Paper: | pp. 153-159 | ||
Performance Evaluation of Image Registration for Map Images |
|
||
Kazuma Kashiwabara, Keisuke Kazama, and Yoshitaka Marumo |
Paper: | pp. 160-170 | ||
Model Predictive Leg Configuration Control for Leg/Wheel Mobile Robots that Adapts to Changes in Ground Level |
|
||
Naoki Takahashi and Kenichiro Nonaka |
Paper: | pp. 171-179 | ||
Risk Factor Attitude Survey and Step of Road Detection Method About Wheelchair of Elderly Person |
|
||
Takashi Asakawa and Hidehiro Saeki |
Paper: | pp. 180-193 | ||
Development of a Bimanual Wearable Force Feedback Device with Pneumatic Artificial Muscles, MR Fluid Brakes, and Sensibility Evaluation Based on Pushing Motion |
|
||
Ryunosuke Sawahashi, Jonah Komatsu, Rie Nishihama, Manabu Okui, and Taro Nakamura |
Development Report: | pp. 194-205 | ||
Method to Achieve High Speed and High Recognition Rate of Goal from Long Distance for CanSat |
|
||
Miho Akiyama, Hiroshi Ninomiya, and Takuya Saito |
Letter: | pp. 206-211 | ||
Monitoring System Using Ceiling Camera and Mobile Robot |
|
||
Junji Satake, Futoshi Jogo, Kurumi Hiraki, Kohei Iwasaki, and Taisei Shirouzu |
Letter: | pp. 212-217 | ||
Identification of Shaft Stiffness and Inertias in Flexible Drive Systems |
|
||
Rached Dhaouadi and Ishaq Hafez |
Vol.34 (2022)
No.6
(Dec)
Special Issue on Robotics for Medical Applications
Special Issue on Robotics for Medical Applications
Editorial: | p. 1215 | |
Robotics for Medical Applications |
| |
Kenji Kawashima, Jumpei Arata, Kanako Harada, and Kotaro Tadano | ||
In recent years, the field of robots for medical applications has been expanding rapidly. Robots effectively augment their operators’ skills, enabling them to achieve accuracy and high precision during complex procedures. The use of robots improves the quality of life of patients and the quality of medical research. Therefore, the research and development of robots for medical applications will become more active in aging societies. This special issue focuses on the design and control of robots as well as integrated technologies for robots for medical applications. These include navigation, simulator, image guidance, training, and validation technologies for robots. The special issue consists of 17 papers with various studies related to medical robots. There are 7 papers on assistant robots, including their passive and active controls, devices, and sensors. There are 10 papers related to minimally invasive surgery and neurosurgery involving robots, including papers on sensors, actuators, navigation, haptic display devices, the mechanical design of devices, and other topics. The editors are confident that this special issue will greatly contribute to further progress in robotics We sincerely thank the authors for their fine contributions and the reviewers for their generous contributions of time and effort. We would also like to thank the Editorial Board of the Journal of Robotics and Mechatronics for their help with this special issue. |
Paper: | pp. 1216-1224 | ||
Automation of Intraoperative Tool Changing for Robot-Assisted Laparoscopic Surgery |
|
||
Dongbo Zhou, Yura Aoyama, Hayato Takeyama, Kotaro Tadano, and Daisuke Haraguchi |
Paper: | pp. 1225-1232 | ||
Compact Variable Stiffness Actuator for Surgical Robots |
|
||
Toshiro Osaka, Kenichiro Seto, D. S. V. Bandara, Hirofumi Nogami, and Jumpei Arata |
Review: | pp. 1233-1244 | ||
Micro-Robotic Medical Tools Employing SMA Actuators for Use in the Human Body |
|
||
Yoichi Haga, Takashi Mineta, Tadao Matsunaga, and Noriko Tsuruoka |
Paper: | pp. 1245-1252 | ||
Real-Time Suture Thread Detection with an Image Classifier |
|
||
Kyotaro Horio, Kanako Harada, Jun Muto, Hirofumi Nakatomi, Nobuhito Saito, Akio Morita, Eiju Watanabe, and Mamoru Mitsuishi |
Paper: | pp. 1253-1267 | ||
Basic Experiments Toward Mixed Reality Dynamic Navigation for Laparoscopic Surgery |
|
||
Xiaoshuai Chen, Daisuke Sakai, Hiroaki Fukuoka, Ryosuke Shirai, Koki Ebina, Sayaka Shibuya, Kazuya Sase, Teppei Tsujita, Takashige Abe, Kazuhiko Oka, and Atsushi Konno |
Paper: | pp. 1268-1276 | ||
Improvement of Haptic Interface for Teleoperation Endoscopic Surgery Simulators Using Magnetorheological Fluid Devices |
|
||
Tetsumasa Takano, Asaka Ikeda, Isao Abe, and Takehito Kikuchi |
Paper: | pp. 1277-1283 | ||
Development of Integrated Leader Controller for Forceps/Retractor Manipulation in Single-Port Water-Filled Laparo-Endoscopic Surgery |
|
||
Kazuya Kawamura and Yuma Shimura |
Paper: | pp. 1284-1296 | ||
Development of Haptic Interface for Neurosurgical Simulators with Micro Scissors Module for Displaying the Cutting Force |
|
||
Teppei Tsujita, Yuto Inoue, Yutaka Takagi, Atsushi Konno, Satoko Abiko, Xin Jiang, Atsuhiro Nakagawa, and Masaru Uchiyama |
Paper: | pp. 1297-1305 | ||
Development of a Force Sensor for a Neuroendovascular Intervention Support Robot System |
|
||
Hiroki Tadauchi, Yoshitaka Nagano, Shigeru Miyachi, Reo Kawaguchi, Tomotaka Ohshima, and Naoki Matsuo |
Paper: | pp. 1306-1317 | ||
Moving Particle Semi-Implicit and Finite Element Method Coupled Analysis for Brain Shift Estimation |
|
||
Akito Ema, Xiaoshuai Chen, Kazuya Sase, Teppei Tsujita, and Atsushi Konno |
Paper: | pp. 1318-1328 | ||
Development of Intraoperative Plantar Pressure Measurement System Considering Weight Bearing Axis and Center of Pressure |
|
||
Izumu Hosoi, Takumi Matsumoto, Song Ho Chang, Qi An, Ichiro Sakuma, and Etsuko Kobayashi |
Paper: | pp. 1329-1337 | ||
Development of a Novel Rollator Equipped with a Motor-Driven Chest Support Pad and Investigation of its Effectiveness |
|
||
Jian Huang and Noriho Koyachi |
Paper: | pp. 1338-1347 | ||
Extraction and Evaluation of Greeting Speech-Timing and Characteristic Upper Body Motion for Robots to Gain Attention of Older Adults |
|
||
Mizuki Enoki, Tomoki Inaishi, and Hiroshi Noguchi |
Paper: | pp. 1348-1360 | ||
Development of a Three-Layer Fabric Mechanism for a Passive-Type Assistive Suit |
|
||
Chi Lok Wan, Toshifumi Ishioka, Chiaki Kanda, Keisuke Osawa, Kenji Kodama, and Eiichiro Tanaka |
Paper: | pp. 1361-1370 | ||
Adapting Balance Training by Changing the Direction of the Tensile Load on the Lumbar Region |
|
||
Tetsuro Miyazaki, Takuro Aoki, Junya Aizawa, Toshihiro Kawase, Maina Sogabe, and Kenji Kawashima |
Paper: | pp. 1371-1382 | ||
A Remote Rehabilitation and Evaluation System Based on Azure Kinect |
|
||
Tai-Qi Wang, Yu You, Keisuke Osawa, Megumi Shimodozono, and Eiichiro Tanaka |
Paper: | pp. 1383-1397 | ||
Development of Automatic Controlled Walking Assistive Device Based on Fatigue and Emotion Detection |
|
||
Yunfan Li, Yukai Gong, Jyun-Rong Zhuang, Junyan Yang, Keisuke Osawa, Kei Nakagawa, Hee-hyol Lee, Louis Yuge, and Eiichiro Tanaka |
Regular Papers
Paper: | pp. 1399-1410 | ||
Simultaneous Execution of Dereverberation, Denoising, and Speaker Separation Using a Neural Beamformer for Adapting Robots to Real Environments |
|
||
Daichi Nagano and Kazuo Nakazawa |
Paper: | pp. 1411-1423 | ||
Effect of Viewpoint Change on Robot Hand Operation by Gesture- and Button-Based Methods |
|
||
Qiang Yao, Tatsuro Terakawa, Masaharu Komori, Hirotaka Fujita, and Ikko Yasuda |
Paper: | pp. 1424-1430 | ||
Wrapping Objects with an Automatic Contraction Ring |
|
||
Takashi Mitsuda |
Paper: | pp. 1431-1440 | ||
Development of a Front-Wheel-Steering-Drive Dual-Wheel Caster Drive Mechanism for Omni-Directional Wheelchairs with High Step Climbing Performance |
|
||
Yuki Ueno, Issei Ikemura, Tsukuru Tanaka, and Yoshiki Matsuo |
Paper: | pp. 1441-1450 | ||
Inspection of the Most Suitable Approach and Information Projection Method for Interactions in the Night Flight of a Projector-Mounted Drone |
|
||
Ryosuke Kakiuchi, Dinh Tuan Tran, and Joo-Ho Lee |
Paper: | pp. 1451-1462 | ||
Characterization of Postural Control in Post-Stroke Patients by Musculoskeletal Simulation |
|
||
Kohei Kaminishi, Dongdong Li, Ryosuke Chiba, Kaoru Takakusaki, Masahiko Mukaino, and Jun Ota |
No.5
(Oct)
Special Issue on High-Speed Vision and its Applications
Special Issue on High-Speed Vision and its Applications
Editorial: | p. 911 | |
High-Speed Vision and its Applications |
| |
Masatoshi Ishikawa, Idaku Ishii, Hiromasa Oku, Akio Namiki, Yuji Yamakawa, and Tomohiko Hayakawa | ||
In recent years, advances in CMOS imagers and AI have rapidly expanded the application fields of image processing. Spatial resolution, sensitivity, dynamic range, etc. for devices have dramatically improved, while various recognition functions have been implemented with the introduction of learning-based information processing, making progress day by day. However, the temporal resolution or temporal dynamics of an image has been limited to the video rate level of processing, because image processing has been required to realize the functions of the human eye. In the case of processing for high-speed moving objects or controlling machine dynamics as machine eyes, rather than processing in the range visible to the human eye, high-speed vision, i.e., high-speed image processing in a bandwidth that covers the dynamics of the object, and a system that utilizes such processing, are required. This special issue summarizes such advanced research on high-speed vision, highlighting its current status and future development in the areas of devices, systems, and application developments. High-speed vision has entered a new era, as the basic technology and various applications have been developed and new functions are being added one after another. We hope that this timely special issue will help its readers grasp this major technological trend and create new system values. |
Review: | pp. 912-935 | ||
High-Speed Vision and its Applications Toward High-Speed Intelligent Systems |
|
||
Masatoshi Ishikawa |
Paper: | pp. 936-945 | ||
Fully Automated Bead Art Assembly for Smart Manufacturing Using Dynamic Compensation Approach |
|
||
Kenichi Murakami, Shouren Huang, Masatoshi Ishikawa, and Yuji Yamakawa |
Paper: | pp. 946-955 | ||
Robotic Assistance for Peg-and-Hole Alignment by Mimicking Annular Solar Eclipse Process |
|
||
Shouren Huang, Kenichi Murakami, Masatoshi Ishikawa, and Yuji Yamakawa |
Paper: | pp. 956-964 | ||
Development of Air Hockey Robot with High-Speed Vision and High-Speed Wrist |
|
||
Koichiro Tadokoro, Shotaro Fukuda, and Akio Namiki |
Paper: | pp. 965-974 | ||
Robotic Pouring Based on Real-Time Observation and Visual Feedback by a High-Speed Vision System |
|
||
Hairui Zhu and Yuji Yamakawa |
Paper: | pp. 975-984 | ||
Real-Time Inspection of Rod Straightness and Appearance by Non-Telecentric Camera Array |
|
||
Leo Miyashita and Masatoshi Ishikawa |
Paper: | pp. 985-996 | ||
Angle of View Switching Method at High-Speed Using Motion Blur Compensation for Infrastructure Inspection |
|
||
Yuriko Ezaki, Yushi Moko, Tomohiko Hayakawa, and Masatoshi Ishikawa |
Paper: | pp. 997-1010 | ||
Tunnel Lining Surface Monitoring System Deployable at Maximum Vehicle Speed of 100 km/h Using View Angle Compensation Based on Self-Localization Using White Line Recognition |
|
||
Tomohiko Hayakawa, Yushi Moko, Kenta Morishita, Yuka Hiruma, and Masatoshi Ishikawa |
Paper: | pp. 1011-1023 | ||
Real-Time Vibration Visualization Using GPU-Based High-Speed Vision |
|
||
Feiyue Wang, Shaopeng Hu, Kohei Shimasaki, and Idaku Ishii |
Paper: | pp. 1024-1032 | ||
Acquisition and Visualization of Micro-Vibration of a Sound Wave in 3D Space |
|
||
Ryusuke Sagawa, Yusuke Higuchi, Ryo Furukawa, and Hiroshi Kawasaki |
Paper: | pp. 1033-1042 | ||
Tracking of Overlapped Vehicles with Spatio-Temporal Shared Filter for High-Speed Stereo Vision |
|
||
Taku Senoo, Atsushi Konno, Yunzhuo Wang, Masahiro Hirano, Norimasa Kishi, and Masatoshi Ishikawa |
Paper: | pp. 1043-1052 | ||
Seamless Multiple-Target Tracking Method Across Overlapped Multiple Camera Views Using High-Speed Image Capture |
|
||
Hyuno Kim, Yuji Yamakawa, and Masatoshi Ishikawa |
Paper: | pp. 1053-1062 | ||
Multi-Thread AI Cameras Using High-Speed Active Vision System |
|
||
Mingjun Jiang, Zihan Zhang, Kohei Shimasaki, Shaopeng Hu, and Idaku Ishii |
Paper: | pp. 1063-1072 | ||
Real-Time Marker-Based Tracking and Pose Estimation for a Rotating Object Using High-Speed Vision |
|
||
Xiao Liang, Masahiro Hirano, and Yuji Yamakawa |
Paper: | pp. 1073-1084 | ||
Multiple High-Speed Vision for Identical Objects Tracking |
|
||
Masahiro Hirano, Keigo Iwakuma, and Yuji Yamakawa |
Paper: | pp. 1085-1095 | ||
EmnDash: A Robust High-Speed Spatial Tracking System Using a Vector-Graphics Laser Display with M-Sequence Dashed Markers |
|
||
Tomohiro Sueishi, Ryota Nishizono, and Masatoshi Ishikawa |
Paper: | pp. 1096-1110 | ||
Structured Light Field by Two Projectors Placed in Parallel for High-Speed and Precise 3D Feedback |
|
||
Hiromu Kijima and Hiromasa Oku |
Paper: | pp. 1111-1121 | ||
High-Speed Depth-Normal Measurement and Fusion Based on Multiband Sensing and Block Parallelization |
|
||
Leo Miyashita, Yohta Kimura, Satoshi Tabata, and Masatoshi Ishikawa |
Paper: | pp. 1122-1132 | ||
Development of a Multi-User Remote Video Monitoring System Using a Single Mirror-Drive Pan-Tilt Mechanism |
|
||
Ananta Adhi Wardana, Shaopeng Hu, Kohei Shimasaki, and Idaku Ishii |
Paper: | pp. 1133-1140 | ||
Portable High-Speed Optical Gaze Controller with Vision Chip |
|
||
Leo Miyashita and Masatoshi Ishikawa |
Paper: | pp. 1141-1151 | ||
Evaluation of Perceptual Difference in Dynamic Projection Mapping with and without Movement of the Target Surface |
|
||
Shunya Fukuda, Shingo Kagami, and Koichi Hashimoto |
Paper: | pp. 1152-1163 | ||
Clear Fundus Images Through High-Speed Tracking Using Glare-Free IR Color Technology |
|
||
Motoshi Sobue, Hirokazu Takata, Hironari Takehara, Makito Haruta, Hiroyuki Tashiro, Kiyotaka Sasagawa, Ryo Kawasaki, and Jun Ohta |
Paper: | pp. 1164-1174 | ||
High-Speed and Low-Latency 3D Fluorescence Imaging for Robotic Microscope |
|
||
Kazuki Yamato, Masatoshi Iuchi, and Hiromasa Oku |
Paper: | pp. 1175-1183 | ||
Development of Aerial Interface by Integrating Omnidirectional Aerial Display, Motion Tracking, and Virtual Reality Space Construction |
|
||
Masaki Yasugi, Mayu Adachi, Kosuke Inoue, Nao Ninomiya, Shiro Suyama, and Hirotsugu Yamamoto |
Regular Papers
Paper: | pp. 1185-1191 | ||
Development of Experimental Multi-Robot System for Network Connectivity Controls |
|
||
Toki Hiasa and Toru Murayama |
Paper: | pp. 1192-1204 | ||
Waypoint-Based Human-Tracking Navigation for Museum Guide Robot |
|
||
Kaito Ichihara, Tadahiro Hasegawa, Shin’ichi Yuta, Hirohisa Ichikawa, and Yoshihide Naruse |
No.4
(Aug)
Special Issue on Systems Science of Hyper-Adaptability
Special Issue on Systems Science of Hyper-Adaptability
Editorial: | p. 699 | |
Systems Science of Hyper-Adaptability |
| |
Toshiyuki Kondo, Jun Ota, Ryosuke Chiba, Qi An, and Kyo Kutsuzawa | ||
“Hyper-adaptability” is the capability of the central nervous system (brain and spinal cord) to manage the impairment of sensory, motor, and cognitive functions by reactivating and recruiting pre-existing networks that are latent but available. In studying hyper-adaptability, interdisciplinary research that integrates mathematical modeling and robotic technologies with neuroscience findings is important. Thanks to support from Japan’s Ministry of Education, Culture, Sports, Science and Technology (MEXT) in the form of Grant-in-Aid for Scientific Research on Innovative Areas, the Hyper-adaptability Research Project started in July 2019. The research works reported in this special issue are the latest achievements of the Hyper-adaptability Research Project. The special issue consists of three review articles and 10 research papers. These contributions cover a wide range of hyper-adaptability research activities, including neurophysiological experiments, functional neuroimaging, mathematical modeling of brain and musculoskeletal systems, cognitive psychological experiments, and robotic / virtual reality interventions for neurorehabilitation, carried out to clarify the mechanisms of hyper-adaptability. We thank the authors for submitting their latest achievements and the reviewers for dedicating their time and effort to the review process. We also thank the editorial board of the Journal of Robotics and Mechatronics for supporting the publication of this special issue. |
Review: | pp. 700-709 | ||
Motor Cortex Plasticity During Functional Recovery Following Brain Damage |
|
||
Noriyuki Higo |
Review: | pp. 710-717 | ||
Neurophysiological Perspective on Allostasis and Homeostasis: Dynamic Adaptation in Viable Systems |
|
||
Hajime Mushiake |
Review: | pp. 718-725 | ||
Impact of the Upper Limb Physiotherapy on Behavioral and Brain Adaptations in Post-Stroke Patients |
|
||
Wataru Kuwahara, Yu Miyawaki, and Fuminari Kaneko |
Paper: | pp. 726-738 | ||
Time Series Analyses of the Responses to Sensory Stimuli of Children with Severe and Multiple Disabilities |
|
||
Eiko Matsuda, Tatsuki Takenaga, Mamoru Iwabuchi, and Kenryu Nakamura |
Paper: | pp. 739-745 | ||
Cerebral Activity-Based Quantitative Evaluation for Attention Levels |
|
||
Saki Niiyama, Shiro Yano, and Toshiyuki Kondo |
Paper: | pp. 746-755 | ||
Olfactory Cues to Reduce Retrograde Interference During the Simultaneous Learning of Conflicting Motor Tasks |
|
||
Eiko Matsuda, Daichi Misawa, Shiro Yano, and Toshiyuki Kondo |
Paper: | pp. 756-766 | ||
Effects of Frequent Changes in Extended Self-Avatar Movements on Adaptation Performance |
|
||
Agata Marta Soccini, Alessandro Clocchiatti, and Tetsunari Inamura |
Paper: | pp. 767-776 | ||
Analysis of Muscle Activity in the Sit-to-Stand Motion When Knee Movability is Disturbed |
|
||
Kazunori Yoshida, Qi An, Hiroyuki Hamada, Hiroshi Yamakawa, Yusuke Tamura, Atsushi Yamashita, and Hajime Asama |
Paper: | pp. 777-785 | ||
Sensorimotor Activities and Their Functional Connectivity Elicited by Robot-Assisted Passive Movements of Lower Limbs |
|
||
Takeshi Sakurada, Ayaka Horiuchi, and Takashi Komeda |
Paper: | pp. 786-794 | ||
Grid-Based Estimation of Transformation Between Partial Relationships Using a Genetic Algorithm |
|
||
Sota Nakamura, Yuichi Kobayashi, and Taisei Matsuura |
Paper: | pp. 795-807 | ||
The Understanding of ON-Edge Motion Detection Through the Simulation Based on the Connectome of Drosophila’s Optic Lobe |
|
||
Munehiro Hayashi, Tomoki Kazawa, Hayato Tsunoda, and Ryohei Kanzaki |
Paper: | pp. 808-816 | ||
Effects of the Mechanical Closed-Loop Between the Body and the Ground on the Postural Balance of Gaits |
|
||
Shuya Ishikawa and Yusuke Ikemoto |
Paper: | pp. 817-827 | ||
A Motor Adaptation Model Assuming Update of Internal Model in the Motor Cortex |
|
||
Sho Furubayashi, Takahiro Hasegawa, and Eizo Miyashita |
Regular Papers
Paper: | pp. 829-843 | ||
Proposal and Experimental Verification of an Implicit Control Based Navigation Scheme in Unknown Environment for a Centipede Type Robot |
|
||
Runze Xiao, Yusuke Tsunoda, and Koichi Osuka |
Paper: | pp. 844-856 | ||
Instantaneous Reaction and Vibration Suppression Using Two-Degree-of-Freedom Admittance Control with H∞ Feedback Controller in Surgical Training Simulator with Chiseling Operation |
|
||
Kentaro Masuyama, Yoshiyuki Noda, Yasumi Ito, Yoshiyuki Kagiyama, and Koichiro Ueki |
Paper: | pp. 857-866 | ||
Development and Evaluation of Dorsiflexion Support Unit Using Elastomer Embedded Flexible Joint |
|
||
Takehito Kikuchi, Toma Ono, Maki Nakahara, Isao Abe, Kenichiro Tanaka, Yasushi Matsumoto, and Naoki Chijiwa |
Paper: | pp. 867-876 | ||
Mobile Robot Localization Through Online SLAM with Modifications |
|
||
Satoshi Hoshino and Yuta Kurihara |
Paper: | pp. 877-886 | ||
Localization Method Using Camera and LiDAR and its Application to Autonomous Mowing in Orchards |
|
||
Hiroki Kurita, Masaki Oku, Takeshi Nakamura, Takeshi Yoshida, and Takanori Fukao |
Paper: | pp. 887-896 | ||
Self-Localization of the Autonomous Robot for View-Based Navigation Using Street View Images |
|
||
Nobuhiko Matsuzaki and Sadayoshi Mikami |
No.3
(Jun)
Special Issue on Creative Robot Contest for Decommissioning
Special Issue on Creative Robot Contest for Decommissioning
Editorial: | p. 497 | |
Creative Robot Contest for Decommissioning |
| |
Osamu Yamashita, Shigekazu Suzuki, and Tomoharu Doi | ||
The decommissioning of the Fukushima Daiichi Nuclear Power Plant, the plant affected by the Great East Japan Earthquake, will continue for a long time to come, but few young people are willing to take on the challenge because they tend to have the impression that decommissioning work is a post-accident cleanup. However, decommissioning is the most important issue for Fukushima and is of global importance. Therefore, the National Institute of Technology, Fukushima College (Fukushima KOSEN), which is located closest to the Fukushima Daiichi Nuclear Power Plant, established a council of cooperation and started the Creative Robot Contest for Decommissioning in cooperation with other National Institute of Technologies (KOSEN) to increase the awareness and interest in decommissioning among the young. The robot contest, themed on issues related to the decommissioning of the Fukushima Daiichi Nuclear Power Plant, has been held annually since 2016 for students of KOSEN across Japan, and the 7th Creative Robot Contest for Decommissioning is scheduled to be held in December 2022. Although the ideas and robots developed by KOSEN students from all over Japan to solve the problems involved in the decommissioning will not directly contribute to future decommissioning work, the ideas and technologies learned can be used in other fields, and the participating students are expected to be active in a wide range of fields as well. This special issue contains review papers of the Creative Robot Contest for Decommissioning, development reports, and research papers on the robots developed. A total of eight papers are included: two review papers, two research papers, and four development reports on decommissioning robots designed by students. At the same time, we hope that young people in Japan and abroad will also become interested in the robots introduced in this special issue, and that the decommissioning work of Fukushima Daiichi Nuclear Power Plant will proceed safely and securely by combining the wisdom of the whole world. |
Review: | pp. 498-508 | ||
Creative Robot Contests for Decommissioning as Conceived by College of Technology or KOSEN Educators |
|
||
Tomoharu Doi, Mitsuyoshi Shimaoka, and Shigekazu Suzuki |
Development Report: | pp. 509-522 | ||
Robots Climbing Up and Down a Steep Stairs and Robots Retrieving Objects from High Places |
|
||
Naoki Igo, Shota Yamaguchi, Noriyuki Kimura, Kazuma Ueda, Kenji Iseya, Kazuma Kobayashi, Toyoaki Tomura, Satoshi Mitsui, and Toshifumi Satake |
Paper: | pp. 523-526 | ||
Design and Fabricate of Reconnaissance Robots for Nuclear Power Plants that Underwent Accidents |
|
||
Yohei Kobayashi, Shunsuke Kanai, Chihiro Kikumoto, and Kohtaro Sakoda |
Development Report: | pp. 527-536 | ||
Activities of the Creative Robot Contest for Decommissioning at National Institute of Technology (NIT), Tsuruoka College |
|
||
Jeyeon Kim, Hikaru Sato, Akihiro Enta, Daisuke Sato, Hideto Kimura, and Masato Sato |
Review: | pp. 537-543 | ||
Development of Robot Simulating Fuel Debris Retrieval |
|
||
Shigekazu Suzuki, Hiroha Toba, Takumi Takeda, Yuta Togashi, and Takahiro Akao |
Development Report: | pp. 544-550 | ||
Design and Manufacture of a New Debris Retrieval Robot |
|
||
Yohei Kobayashi, Ryotaro Kayawake, Keito Sagane, Kazuaki Murai, and Yasuo Utsumi |
Development Report: | pp. 551-558 | ||
Development of Multi-Articulated Tracked Vehicle with a Sensorless Salvaging Bucket for Decommissioning |
|
||
Junji Hirasawa, Shun Isobe, Yusuke Kuramochi, Mitsuhiro Nishino, and Yoshihisa Nihei |
Paper: | pp. 559-567 | ||
Research on Debris Removal Robot |
|
||
Yohei Kobayashi, Kenta Morita, and Shigekazu Suzuki |
Regular Papers
Paper: | pp. 569-575 | ||
Electric Field Strength Simulation Using 2D-Environment Map Generated by Tele-Operated Mobile Robot |
|
||
SungHee Kim, Yasushi Hada, and Koji Kanayama |
Paper: | pp. 576-587 | ||
Hydraulic Robotic Leg for HYDROïD Robot: Modeling and Control |
|
||
Ahmed Abdellatif Hamed Ibrahim, Anas Ammounah, Samer Alfayad, Sami Tliba, Fethi Ben Ouezdou, and Stéphane Delaplace |
Paper: | pp. 588-598 | ||
Multi-Legged Inspection Robot with Twist-Based Crouching and Fine Adjustment Mechanism |
|
||
Maroay Phlernjai and Photchara Ratsamee |
Paper: | pp. 599-606 | ||
An Innovative Spiral Pulley that Optimizes Cable Tension Variation for Superior Balancing Performance |
|
||
Tian Shen and Ken’ichi Yano |
Paper: | pp. 607-614 | ||
Planning the Shortest Carrying Trajectory Including Path and Attitude Change Considering Gripping Constraints |
|
||
Takahiro Ario and Ikuo Mizuuchi |
Paper: | pp. 615-621 | ||
Human-Gait-Based Tracking Control for Lower Limb Exoskeleton Robot |
|
||
Yongping Dan, Yifei Ge, Aihui Wang, and Zhuo Li |
Paper: | pp. 622-630 | ||
Analysis of Measuring Precision of 3D Model of Ishigaki Stone in Kumamoto Castle Using Automatic CMG Crane System |
|
||
Nobutomo Matsunaga, Masaki Kuwahara, Hiroshi Okajima, and Gou Koutaki |
Paper: | pp. 631-644 | ||
Development of a Real-Time Simulator for a Semi-Autonomous Tele-Robot in an Unknown Narrow Path |
|
||
Nattawat Pinrath and Nobuto Matsuhira |
Paper: | pp. 645-653 | ||
Method of Studying a Process of Turning in an Orthotic Robot |
|
||
Mateusz Janowski, Danuta Jasińska-Choromańska, and Marcin Zaczyk |
Paper: | pp. 654-663 | ||
Self-Localization of Mobile Robot Based on Beacon Beam of TOF Laser Sensor Mounted on Pan-Tilt Actuator: Estimation Method that Combines Spot Coordinates on Laser Receiver and Odometry |
|
||
Ryoji Miura, Daichi Usagawa, Keigo Noguchi, Satoshi Iwaki, and Tetsushi Ikeda |
Paper: | pp. 664-676 | ||
Data-Driven Model-Free Adaptive Displacement Control for Tap-Water-Driven Artificial Muscle and Parameter Design Using Virtual Reference Feedback Tuning |
|
||
Satoshi Tsuruhara and Kazuhisa Ito |
Development Report: | pp. 677-682 | ||
Redesigned Microcantilevers for Sensitivity Improvement of Microelectromechanical System Tactile Sensors |
|
||
Ren Kaneta, Takumi Hasegawa, Jun Kido, Takashi Abe, and Masayuki Sohgawa |
No.2
(Apr)
Special Issue on Science of Soft Robots
Special Issue on Science of Soft Robots
Editorial: | pp. 193-194 | |
Science of Soft Robots |
| |
Koichi Suzumori, Ryuma Niiyama, Kenjiro Fukuda, and Kohei Nakajima | ||
The science of soft robots, or soft robotics, is currently one of the most active fields in robotics. While traditional robots consist of rigid bodies, powerful servomotors, and carefully coded programs to realize power, precision, and reliability, soft robots consist of soft and flexible bodies, actuators, and intelligence for adaptability. They are not rigid, but instead flexible toward their surroundings. These differences have the potential to make soft robotics a great new field in robotics. A JSPS KAKENHI project “Science of Soft Robots” has been in progress in Japan since 2018. Part of this special issue is made in collaboration with this project. This special issue consists of 46 works in total: 2 review papers, 29 letters, and 15 papers. One review paper, 29 letters, and 3 research papers report research activities from the JSPS KAKENHI project, and the other review paper and 12 research papers have been contributed from outside the project. As this issue will make clear, the science of soft robots is a very interdisciplinary academic field, a collaboration of many researchers from various fields, such as mechanical/electrical engineering, computer science, material sciences, biology, zoology, medicine, and nursing, among others. We believe interdisciplinary work to be a key point for the exploration of soft robotics. The editors thank all of the authors and reviewers of the contributions, and are confident that this special issue will greatly contribute to further progress in robotics. |
Review: | pp. 195-201 | ||
Overview of the Kakenhi Grant-in-Aid for Scientific Research on Innovative Areas: Science of Soft Robots |
|
||
Koichi Suzumori |
Review: | pp. 202-211 | ||
Review of Electronics-Free Robotics: Toward a Highly Decentralized Control Architecture |
|
||
Yoichi Masuda and Masato Ishikawa |
Letter: | pp. 212-218 | ||
Ostrich-Inspired Soft Robotics: A Flexible Bipedal Manipulator for Aggressive Physical Interaction |
|
||
Hiromi Mochiyama, Megu Gunji, and Ryuma Niiyama |
Letter: | pp. 219-222 | ||
Toward Self-Modifying Bio-Soft Robots |
|
||
Takuya Umedachi and Masahiro Shimizu |
Letter: | pp. 223-226 | ||
Biomimetic Soft Wings for Soft Robot Science |
|
||
Hiroto Tanaka, Toshiyuki Nakata, and Takeshi Yamasaki |
Letter: | pp. 227-230 | ||
Flexible Thin-Film Device for Powering Soft Robots |
|
||
Tatsuhiro Horii, Toshinori Fujie, and Kenjiro Fukuda |
Letter: | pp. 231-233 | ||
Three-Dimensional Ion Polymer–Metal Composite Soft Robots |
|
||
Tetsuya Horiuchi, Hiroyuki Nabae, and Koichi Suzumori |
Letter: | pp. 234-239 | ||
From a Deployable Soft Mechanism Inspired by a Nemertea Proboscis to a Robotic Blood Vessel Mechanism |
|
||
Kenjiro Tadakuma, Masaru Kawakami, and Hidemitsu Furukawa |
Letter: | pp. 240-248 | ||
Durable Pneumatic Artificial Muscles with Electric Conductivity for Reliable Physical Reservoir Computing |
|
||
Ryo Sakurai, Mitsuhiro Nishida, Taketomo Jo, Yasumichi Wakao, and Kohei Nakajima |
Letter: | pp. 249-252 | ||
Self-Actuating and Nonelectronic Machines |
|
||
Shingo Maeda, Hiroki Shigemune, and Hideyuki Sawada |
Letter: | pp. 253-256 | ||
Controllable Biological Rhythms and Patterns |
|
||
Hiroshi Ito, Takuma Sugi, and Ken H. Nagai |
Letter: | pp. 257-259 | ||
Environmental Response Sensors Produced Using Bilayer-Type Organic Semiconductors |
|
||
Shunto Arai |
Letter: | pp. 260-262 | ||
Biohybrid Soft Robots Driven by Contractions of Skeletal Muscle Tissue |
|
||
Yuya Morimoto and Shoji Takeuchi |
Letter: | pp. 263-265 | ||
Evaluating Axon Conduction Characteristics of Cultured Sensory Neurons Toward Soft Robot Control |
|
||
Kenta Shimba, Kiyoshi Kotani, and Yasuhiko Jimbo |
Letter: | pp. 266-269 | ||
Development of High-Durability Flexible Fabrics Using High-Strength Synthetic Fibers and its Application to Soft Robots |
|
||
Gen Endo, Kaisei Yamagishi, Yuta Yamanaka, and Kenjiro Tadakuma |
Letter: | pp. 270-272 | ||
Green Robotics: Toward Realization of Environmentally Friendly Soft Robots |
|
||
Jun Shintake |
Letter: | pp. 273-275 | ||
Development of a PVC Gel Actuator with a Particulate Structure |
|
||
Aya Suzuki and Minoru Hashimoto |
Letter: | pp. 276-278 | ||
Peristaltic Mixing Pump Based on Bowel Peristalsis Using Pneumatic Artificial Rubber Muscles and Prospects for Practical Applications |
|
||
Taro Nakamura |
Letter: | pp. 279-284 | ||
Development of Living “Bio-Robots” for Autonomous Actuations |
|
||
Kazuya Furusawa, Ryo Teramae, Hirono Ohashi, and Masahiro Shimizu |
Letter: | pp. 285-287 | ||
Analysis of Soft Contact in Force Sensing and Elastic Jumping |
|
||
Takahiro Matsuno and Shinichi Hirai |
Letter: | pp. 288-290 | ||
Development of Microdevices Combining Machine and Life Systems |
|
||
Yo Tanaka |
Letter: | pp. 291-293 | ||
Soft Microrobot for Embryo Transfer in Assisted Reproductive Technology |
|
||
Susumu Koseki, Kazuhiro Kawamura, Futoshi Inoue, and Masashi Ikeuchi |
Letter: | pp. 294-297 | ||
Development of a Soft Robot with Pressure Ulcer Prevention Functions |
|
||
Shoko Miyagawa, Ryohei Yuasa, Hiroyuki Nabae, Hidemitsu Furukawa, and Masaru Kawakami |
Letter: | pp. 298-300 | ||
Soft Microswimmer Powered by Fluid Oscillation |
|
||
Takuji Ishikawa, Takeru Morita, and Toshihiro Omori |
Letter: | pp. 301-303 | ||
Motion Hacking – Understanding by Controlling Animals – |
|
||
Dai Owaki and Volker Dürr |
Letter: | pp. 304-309 | ||
Flexible Shoulder in Quadruped Animals and Robots Guiding Science of Soft Robotics |
|
||
Akira Fukuhara, Megu Gunji, Yoichi Masuda, Kenjiro Tadakuma, and Akio Ishiguro |
Letter: | pp. 310-315 | ||
In-Situ X-Ray Analyses of Structural Change During Drawing and Shrinking of Linear Low-Density Polyethylene Film |
|
||
Hiroaki Yoshizawa, Ayaka Takazawa, Masaki Kakiage, Takeshi Yamanobe, Naoki Hayashi, Maki Hiraoka, Hiroyasu Masunaga, Kouki Aoyama, and Hiroki Uehara |
Letter: | pp. 316-318 | ||
Neural Interface for Biohybrid Prosthetic Hands to Realize Sensory and Motor Functions |
|
||
Tohru Yagi, Zugui Peng, and Shoichiro Kanno |
Letter: | pp. 319-321 | ||
Exploring the Bio-Functional Breaking Point of Living Tissue Subjected to External Physical Pressure |
|
||
Shotaro Tanaka and Fumio Nakamura |
Letter: | pp. 322-324 | ||
Flexible Light-Induced Self-Written Optical Waveguide Using Gel Material |
|
||
Ryo Futawatari, Hidetaka Terasawa, and Okihiro Sugihara |
Letter: | pp. 325-327 | ||
Design Research of Wearable Soft Avatar Robot for Interactive Social Presence |
|
||
Young ah Seong |
Paper: | pp. 328-338 | ||
Robostrich Arm: Wire-Driven High-DOF Underactuated Manipulator |
|
||
Kenji Misu, Masahiro Ikeda, Keung Or, Mitsuhito Ando, Megu Gunji, Hiromi Mochiyama, and Ryuma Niiyama |
Paper: | pp. 339-350 | ||
Local Discrimination Based on Piezoelectric Sensing in Robots Composed of Soft Matter with Different Physical Properties |
|
||
Ikuma Sudo, Jun Ogawa, Yosuke Watanabe, MD Nahin Islam Shiblee, Ajit Khosla, Masaru Kawakami, and Hidemitsu Furukawa |
Paper: | pp. 351-360 | ||
Low-Voltage Activation Based on Electrohydrodynamics in Positioning Systems for Untethered Robots |
|
||
Keita Abe, Yumeta Seki, Yu Kuwajima, Ayato Minaminosono, Shingo Maeda, and Hiroki Shigemune |
Paper: | pp. 361-372 | ||
Hermetically-Sealed Flexible Mobile Robot “MOLOOP” for Narrow Terrain Exploration |
|
||
Hitoshi Kimura, Mokutaro Kataoka, and Norio Inou |
Paper: | pp. 373-381 | ||
Development of a Spiral Shaped Soft Holding Actuator Using Extension Type Flexible Pneumatic Actuators |
|
||
So Shimooka, Tetsuya Akagi, Shujiro Dohta, Takashi Shinohara, and Takumi Kobayashi |
Paper: | pp. 382-389 | ||
Development of Flexible Electro-Hydraulic Spherical Actuator |
|
||
Wataru Kobayashi, Hiroaki Tamaki, Tetsuya Akagi, Shujiro Dohta, and So Shimooka |
Paper: | pp. 390-401 | ||
Development of Endoskeleton Type Knee Joint Assist Orthosis Using McKibben Type Artificial Muscle |
|
||
Kiichi Uchiyama, Takumi Ito, and Hiroki Tomori |
Paper: | pp. 402-412 | ||
Proposal of Manufacturing Method for New Passive Elastic Joint and Prototype of Human Phantom |
|
||
Masahiro Ikeda, Ryuma Niiyama, and Yasuo Kuniyoshi |
Paper: | pp. 413-421 | ||
Echo State Network for Soft Actuator Control |
|
||
Cedric Caremel, Matthew Ishige, Tung D. Ta, and Yoshihiro Kawahara |
Paper: | pp. 422-429 | ||
Micro Flow Control Valve with Stable Condition Using Particle-Excitation |
|
||
Daisuke Hirooka, Naomichi Furushiro, and Tomomi Yamaguchi |
Paper: | pp. 430-443 | ||
Vacuum End Effector Equipped with an Expansion and Contraction Mechanism Using a Wound Thin Metal Plate |
|
||
Junya Tanaka |
Paper: | pp. 444-453 | ||
Development and Application of Silicone Outer Shell-Type Pneumatic Soft Actuators |
|
||
Yasuhiro Hayakawa, Keisuke Kida, Yuma Nakanishi, Hiroaki Ichii, and Yasunobu Hirota |
Paper: | pp. 454-465 | ||
Development of Self-Powered 5-Finger Pneumatically Driven Hand Prosthesis Using Supination of Forearm |
|
||
Kotaro Nishikawa, Kentaro Hirata, and Masahiro Takaiwa |
Paper: | pp. 466-477 | ||
Variable-Stiffness and Deformable Link Using Shape-Memory Material and Jamming Transition Phenomenon |
|
||
Kazuto Takashima, Toshiki Imazawa, and Hiroki Cho |
Paper: | pp. 478-485 | ||
Development of Flexible Deformation Mobile Robot Composed of Multiple Units and Pneumatic Self-Excited Valve |
|
||
Takuya Hada, Kenta Iguchi, and Takeshi Aoki |
No.1
(Feb)
Congratulations! JRM Best Paper Award 2021
Special Issue on Activity of Research Center – Kindai University: Advanced Robotic Technology Research Center
Congratulations! JRM Best Paper Award 2021
Award: | pp. 1-2 | |
Congratulations! Journal of Robotics and Mechatronics Best Paper Award 2021 |
| |
Editorial Office |
Special Issue on Activity of Research Center – Kindai University: Advanced Robotic Technology Research Center
Institute Overview: | pp. 6-9 | ||
Kindai University: Advanced Robotic Technology Research Center in Fundamental Technology for Next Generation Research Institute |
|
||
Noriho Koyachi, Jian Huang, Junya Tatsuno, Atsushi Shirai, Mizuho Shibata, Nobuyasu Tomokuni, Masaharu Tagami, and Yuki Matsutani |
Paper: | pp. 10-17 | ||
Automatic Transplanting Equipment for Chain Pot Seedlings in Shaft Tillage Cultivation |
|
||
Junya Tatsuno, Kiyoshi Tajima, and Masayoshi Kato |
Paper: | pp. 18-27 | ||
Measurements and Analyses of Walk Using a Novel Rollator Equipped with a Rotatable Chest Pad |
|
||
Jian Huang, Hiroaki Ashida, Yuetong He, Noriho Koyachi, and Takashi Harada |
Paper: | pp. 28-39 | ||
Prototype of a Continuous Passive Motion Device for the Knee Joint with a Function of Active Exercise |
|
||
Masaharu Tagami, Masaki Hasegawa, Wataru Tanahara, and Yasutaka Tagawa |
Paper: | pp. 40-46 | ||
Fish-Like Robot with a Deformable Body Fabricated Using a Silicone Mold |
|
||
Mizuho Shibata |
Development Report: | pp. 47-53 | ||
A Balance Control for the Miniature Motorcycle Robot with Inertial Rotor and Steering |
|
||
Nobuyasu Tomokuni |
Regular Papers
Paper: | pp. 55-63 | ||
Analysis of Timing and Effect of Visual Cue on Turn-Taking in Human-Robot Interaction |
|
||
Takenori Obo and Kazuma Takizawa |
Paper: | pp. 64-71 | ||
Development of an Underwater Robot for Detecting Shallow Water in a Port |
|
||
Ririka Itoh and Tadatsugi Okazaki |
Paper: | pp. 72-85 | ||
Gait Rehabilitation and Locomotion Support System Using a Distributed Controlled Robot System |
|
||
Katsuhiko Nishizawa, Toru Tsumugiwa, and Ryuichi Yokogawa |
Paper: | pp. 86-100 | ||
Local and Global Path Planning for Autonomous Mobile Robots Using Hierarchized Maps |
|
||
Nobuyuki Matsui, Isuru Jayarathne, Hiroaki Kageyama, Keitaro Naruse, Kazuki Urabe, Ryota Sakamoto, Tomoaki Mashiko, Seiya Kumada, Yuichi Yaguchi, Makoto Yashiro, Yasutsugu Ishibashi, and Miki Yutani |
Paper: | pp. 101-110 | ||
Mechanism and Effect of Tread Swing for Lower Limbs Strength Training Device |
|
||
Takumi Tamamoto, Ken’ichi Koyanagi, Yoshinori Kimura, Maki Koyanagi, Akio Inoue, Tomoaki Murabayashi, Toru Oshima, Takuya Tsukagoshi, and Kentaro Noda |
Paper: | pp. 111-120 | ||
Mobile Robot Localization Using Map Based on Cadastral Data for Autonomous Navigation |
|
||
Satoshi Hoshino and Hideaki Yagi |
Paper: | pp. 121-130 | ||
High-Dorsiflexion Assistive System for Passive Swing Phase Dorsiflexion Training and Preventing Compensatory Movements |
|
||
Jing-Chen Hong, Hiroki Ohashi, and Hiroyasu Iwata |
Paper: | pp. 131-139 | ||
Thermally Driven Vehicle Using Bimetal Rings |
|
||
Akira Okuno, Shunsuke Yoshimoto, and Akio Yamamoto |
Paper: | pp. 140-148 | ||
Development of Haptic Pointing Devices Under the Variable Admittance Control Theory |
|
||
Toru Tsumugiwa, Gen Asai, Atsushi Kamiyoshi, and Ryuichi Yokogawa |
Paper: | pp. 149-158 | ||
CameraRoach: A WiFi- and Camera-Enabled Cyborg Cockroach for Search and Rescue |
|
||
Sriranjan Rasakatla, Wataru Tenma, Takeshi Suzuki, Bipin Indurkhya, and Ikuo Mizuuchi |
Development Report: | pp. 159-166 | ||
Adaptation of a Small Robot for Paddy Fields to the Water Depth Change Using Variable Legs |
|
||
Kentaro Kameyama and Takuya Wada |
Development Report: | pp. 167-176 | ||
Development of Train-Boarding Assistance Device for Wheelchair |
|
||
Keunyoung Kim, Hiroshi Kobayashi, Kenta Matsumoto, and Takuya Hashimoto |
Vol.33 (2021)
No.6
(Dec)
Special Issue on Field Robotics with Vision Systems
Special Issue on Field Robotics with Vision Systems
Editorial: | p. 1215 | |
Field Robotics with Vision Systems |
| |
Takanori Fukao, Yuichi Tsumaki, and Keita Kurashiki | ||
Field robotics has been undergoing rapid progress in recent years. It addresses a wide range of activities performed in outdoor environments, and its applications are being developed in areas where it was previously considered difficult to apply. This rapid progress is largely supported by AI-based improvements in computer vision systems with monocular cameras, stereo cameras, RGB-D cameras, LiDAR systems, and/or other sensors. Field robotics is impelled by an application-driven approach by its nature, and it contributes to the resolution of social problems and the creation of new innovations, including autonomous driving to reduce casualties, autonomous working machines/robots to resolve the problems of labor shortages or dangers, disaster-response robots to aid rescue parties, various kinds of aerial robots to do searches or make deliveries, underwater robots to perform search missions, etc. In this special issue on “Field Robotics with Vision Systems,” we highlight sixteen interesting papers, including one review paper, fourteen research papers, and one development report. They cover various application areas, ranging from underwater to space environments, and they propose interesting integration methods or element technologies to use in outdoor environments where vision systems and robot systems have great difficulty performing robustly. We thank all authors and reviewers, and we hope that this special issue contributes to future research and development in area of field robotics, which promises new innovations. |
Review: | pp. 1216-1222 | ||
Field Robotics: Applications and Fundamentals |
|
||
Takanori Fukao |
Paper: | pp. 1223-1233 | ||
Development of AUV MONACA - Hover-Capable Platform for Detailed Observation Under Ice – |
|
||
Hirokazu Yamagata, Shuma Kochii, Hiroshi Yoshida, Yoshifumi Nogi, and Toshihiro Maki |
Paper: | pp. 1234-1247 | ||
Numerical and Experimental Analysis of Portable Underwater Robots with a Movable Float Device |
|
||
Norimitsu Sakagami, Mizuho Shibata, Tomohiro Ueda, Kensei Ishizu, Kenshiro Yokoi, and Sadao Kawamura |
Paper: | pp. 1248-1254 | ||
An Optimal Design Methodology for the Trajectory of Hydraulic Excavators Based on Genetic Algorithm |
|
||
Takamichi Yuasa, Masato Ishikawa, and Satoshi Ogawa |
Paper: | pp. 1255-1264 | ||
On the Geometric Featureless Visual Velocity of UGV in an Agriculture Scale |
|
||
Satoru Sakai and Daiki Nakabayashi |
Paper: | pp. 1265-1273 | ||
Robotic Forklift for Stacking Multiple Pallets with RGB-D Cameras |
|
||
Ryosuke Iinuma, Yusuke Hori, Hiroyuki Onoyama, Yukihiro Kubo, and Takanori Fukao |
Paper: | pp. 1274-1283 | ||
Tomato Recognition for Harvesting Robots Considering Overlapping Leaves and Stems |
|
||
Takeshi Ikeda, Ryo Fukuzaki, Masanori Sato, Seiji Furuno, and Fusaomi Nagata |
Paper: | pp. 1284-1293 | ||
Autonomous Path Travel Control of Mobile Robot Using Internal and External Camera Images in GPS-Denied Environments |
|
||
Keita Yamada, Shoya Koga, Takashi Shimoda, and Kazuya Sato |
Paper: | pp. 1294-1302 | ||
CNN-Based Terrain Classification with Moisture Content Using RGB-IR Images |
|
||
Tomoya Goto and Genya Ishigami |
Paper: | pp. 1303-1314 | ||
Development of an Automatic Tracking Camera System Integrating Image Processing and Machine Learning |
|
||
Masato Fujitake, Makito Inoue, and Takashi Yoshimi |
Paper: | pp. 1315-1325 | ||
Spread Spectrum Sound with TDMA and INS Hybrid Navigation System for Indoor Environment |
|
||
Romprakhun Tientadakul, Hiroaki Nakanishi, Tomoo Shiigi, Zichen Huang, Lok Wai Jacky Tsay, and Naoshi Kondo |
Paper: | pp. 1326-1337 | ||
LPWAN-Based Real-Time 2D SLAM and Object Localization for Teleoperation Robot Control |
|
||
Alfin Junaedy, Hiroyuki Masuta, Kei Sawai, Tatsuo Motoyoshi, and Noboru Takagi |
Paper: | pp. 1338-1348 | ||
Human Tracking of a Crawler Robot in Climbing Stairs |
|
||
Yasuaki Orita, Kiyotsugu Takaba, and Takanori Fukao |
Paper: | pp. 1349-1358 | ||
Attractive Force Estimation of a Magnetic Adsorption Unit for Inspection UAVs |
|
||
Yoshiyuki Higashi, Kenta Yamazaki, Arata Masuda, Nanako Miura, and Yuichi Sawada |
Paper: | pp. 1359-1372 | ||
A Novel Method for Goal Recognition from 10 m Distance Using Deep Learning in CanSat |
|
||
Miho Akiyama and Takuya Saito |
Development Report: | pp. 1373-1383 | ||
Image Mosaicking and Localization Using a Camera Mounted on a Hanging-Type Wall Climbing Robot |
|
||
Shigenori Sano, Daisuke Takaki, Atsunori Ishida, and Teruhiro Ishida |
Regular Papers
Paper: | pp. 1385-1397 | ||
Visual SLAM Framework Based on Segmentation with the Improvement of Loop Closure Detection in Dynamic Environments |
|
||
Leyuan Sun, Rohan P. Singh, and Fumio Kanehiro |
Paper: | pp. 1398-1407 | ||
Development of Tele-Operated Underfloor Mobile Manipulator |
|
||
Shunsuke Sato, Tianlin Song, and Yasumichi Aiyama |
Paper: | pp. 1408-1422 | ||
Improved 3D Human Motion Capture Using Kinect Skeleton and Depth Sensor |
|
||
Alireza Bilesan, Shunsuke Komizunai, Teppei Tsujita, and Atsushi Konno |
Paper: | pp. 1423-1428 | ||
Intelligent Path Planning Approach for Autonomous Mobile Robot |
|
||
Ibrahim M. Al-Adwan |
No.5
(Oct)
Special Issue on Augmenting the Human Body and Being
Special Issue on Augmenting the Human Body and Being
Editorial: | pp. 985-986 | |
Augmenting the Human Body and Being |
| |
Masahiko Inami, Hiroyasu Iwata, Minao Kukita, Yuichi Kurita, Kouta Minamizawa, Masaaki Mochimaru, Takuji Narumi, Junichi Rekimoto, and Kenji Suzuki | ||
Information technologies, such as IoT, artificial intelligence (AI), and virtual reality (VR), have seen so much development that there is now a wide variety of digital equipment incorporated into the infrastructure of daily life. From the agrarian society (Society 1.0) through the information society (Society 4.0), humankind has created farmlands and cities by structuring natural environments physically and has built information environments by structuring them informationally. However, despite the rapid development of information environments, it may be fair to say that the perspectives of the human body have not changed at all since the industrial revolution. In the context of these recent technological developments, greater attention is being paid to human augmentation studies. These studies aim for a new embodiment of “human-computer integration,” one which can physically and informationally compensate or augment our innate sensory functions, motor functions, and intellectual processing functions by using digital equipment and information systems at will, as if they were our hands and feet. It has also been proposed that the technical systems that enable us to freely do what we want by utilizing human augmentations be called “JIZAI” (freedomization) as opposed to “automation.” The term “JIZAI body” used in these studies represents the new body image of humans who will utilize engineering and informatics technologies to act at will in the upcoming “super smart society” or “Society 5.0.” In these studies, human augmentation technologies are an important component of JIZAI, but JIZAI is not the same as human augmentation. JIZAI is different in scope from human augmentation, as it aims to enable humans to move freely among the five new human body images: “strengthened sense” (augmented perception), “strengthened physical body” (body augmentation), “separately-designed mind and body” (out of body transform), “shadow cloning,” and “assembling.” In the society of the future...<more> |
Review: | pp. 987-1003 | ||
Transparency in Human-Machine Mutual Action |
|
||
Hiroto Saito, Arata Horie, Azumi Maekawa, Seito Matsubara, Sohei Wakisaka, Zendai Kashino, Shunichi Kasahara, and Masahiko Inami |
Review: | pp. 1004-1012 | ||
Virtual Mirror and Beyond: The Psychological Basis for Avatar Embodiment via a Mirror |
|
||
Yasuyuki Inoue and Michiteru Kitazaki |
Paper: | pp. 1013-1028 | ||
Manipulating Sense of Participation in Multipartite Conversations by Manipulating Head Attitude and Gaze Direction |
|
||
Kenta Higashi, Naoya Isoyama, Nobuchika Sakata, and Kiyoshi Kiyokawa |
Paper: | pp. 1029-1042 | ||
Effect of the Opponent’s Appearance on Interpersonal Cognition that Affects User-to-User Relationship in Virtual Whole-Body Interaction |
|
||
Sho Sakurai, Takumi Goto, Takuya Nojima, and Koichi Hirota |
Paper: | pp. 1043-1050 | ||
Local Peak Method: An Electrotactile Stimulation Method Focusing on Surface Structures for Texture Rendering |
|
||
Akimu Hirai, Masaya Nakayama, and Takefumi Ogawa |
Paper: | pp. 1051-1062 | ||
Electrical Muscle Stimulation to Develop and Implement Menstrual Simulator System |
|
||
Chihiro Asada, Kotori Tsutsumi, Yuichi Tamura, Naoya Hara, Wataru Omori, Yuta Otsuka, and Katsunari Sato |
Paper: | pp. 1063-1074 | ||
Leveraging Motor Babbling for Efficient Robot Learning |
|
||
Kei Kase, Noboru Matsumoto, and Tetsuya Ogata |
Paper: | pp. 1075-1081 | ||
Dynamic Brake Control for a Wearable Impulsive Force Display by a String and a Brake System |
|
||
Satoshi Saga and Naoto Ikeda |
Paper: | pp. 1082-1095 | ||
Device-Free Handwritten Character Recognition Method Using Acoustic Signal |
|
||
Atsushi Ogura, Hiroki Watanabe, and Masanori Sugimoto |
Paper: | pp. 1096-1103 | ||
Training to Improve the Landing of an Uninjured Leg in Crutch Walk Using AR Technology to Present an Obstacle |
|
||
Naoaki Tsuda, Takuya Ehiro, Yoshihiko Nomura, and Norihiko Kato |
Paper: | pp. 1104-1116 | ||
Bilaterally Shared Haptic Perception for Human-Robot Collaboration in Grasping Operation |
|
||
Yoshihiro Tanaka, Shogo Shiraki, Kazuki Katayama, Kouta Minamizawa, and Domenico Prattichizzo |
Paper: | pp. 1117-1127 | ||
Analysis of Hot-Cold Confusion on Fingers |
|
||
Satoshi Hashiguchi |
Paper: | pp. 1128-1134 | ||
Anodal Galvanic Taste Stimulation to the Chin Enhances Salty Taste of NaCl Water Solution |
|
||
Hiromi Nakamura, Tomohiro Amemiya, Jun Rekimoto, Hideyuki Ando, and Kazuma Aoyama |
Paper: | pp. 1135-1143 | ||
VIDVIP: Dataset for Object Detection During Sidewalk Travel |
|
||
Tetsuaki Baba |
Regular Papers
Paper: | pp. 1145-1154 | ||
Development of Automatic Chair Transport System - Chair Recognition and Approach Strategy – |
|
||
Koshiro Miyauchi and Nobuaki Nakazawa |
Paper: | pp. 1155-1168 | ||
Geometric Correction Method Applying the Holographic Ray Direction Control Technology |
|
||
Kenta Tanaka, Motoyasu Sano, Yumi Horimai, Hideyoshi Horimai, and Yusuke Aoki |
Paper: | pp. 1169-1177 | ||
Active Steering Wheel System for Ultra-Compact Mobility Vehicles: Operability Evaluation with Steering Burden in Various Drivers |
|
||
Daigo Uchino, Takamasa Hirai, Shugo Arai, Keigo Ikeda, Taro Kato, Xiaojun Liu, Ayato Endo, Hideaki Kato, and Takayoshi Narita |
Paper: | pp. 1178-1189 | ||
Easy-Riding Compact Electric Shopping Vehicle |
|
||
Takeharu Hayashi, Yoshihiko Takahashi, and Satoru Yamaguchi |
Paper: | pp. 1190-1203 | ||
Inter-Module Physical Interactions: A Force-Transmissive Modular Structure for Whole-Body Robot Motion |
|
||
Shiqi Yu, Yoshihiro Nakata, Yutaka Nakamura, and Hiroshi Ishiguro |
No.4
(Aug)
Special Issue on Nursing Robots and Support Systems for Welfare Sites
Special Issue on Nursing Robots and Support Systems for Welfare Sites
Editorial: | pp. 711-712 | |
Nursing Robots and Support Systems for Welfare Sites |
| |
Shoichiro Fujisawa, Masahiro Takaiwa, Yasuhisa Hirata, Shinya Kotosaka, and Daisuke Chugo | ||
Japan’s population is aging at a speed unprecedented in the world, and its shortage of caregivers has become a major issue. At the same time, the Internet of Things (IoT) is expected to create unprecedented new value by connecting all people and things, allowing them to share various kinds of knowledge and information. In addition, as artificial intelligence (AI) and big data are undergoing a transformation that is changing the value of human labor, robots incorporating these innovative technologies are expected to solve the problems of the aging society. On the other hand, in the field of nursing care, the relationship between the caregiver and the care-receiver is basically a person-to-person connection. There is a question of how people and technology can coexist and produce new creations in such fields. This special issue on Nursing Robots and Support Systems for Welfare Sites includes one review paper and 23 other interesting papers that cover the following topics: We thank all authors and reviewers of the papers as well as the Editorial Board of the Journal of Robotics and Mechatronics for their help with this special issue. |
Review: | pp. 713-718 | ||
Development and Dissemination of Nursing Robots and Support Systems for Welfare Sites |
|
||
Yuji Higashi |
Paper: | pp. 719-729 | ||
Effectiveness of Continuous Grip Strength Measurement Using Social Assistive Robots on Older Adults at Home |
|
||
Mio Nakamura, Kohki Okajima, Yoshio Matsumoto, Tomoki Tanaka, Katsuya Iijima, and Misato Nihei |
Paper: | pp. 730-738 | ||
Method to Record and Analyze the Operation of Seal Robot in Elderly Care |
|
||
Kohei Kuramochi, Kazuyoshi Wada, Koji Kimita, Haruka Kurokawa, Kaoru Inoue, and Yoshiki Shimomura |
Paper: | pp. 739-746 | ||
Development of a Care Robot Based on Needs Survey |
|
||
Junji Kawata, Jiro Morimoto, Yoshio Kaji, Mineo Higuchi, Kajiro Matsumoto, Masayuki Booka, and Shoichiro Fujisawa |
Paper: | pp. 747-755 | ||
Impression Survey and Grounded Theory Analysis of the Development of Medication Support Robots for Patients with Schizophrenia |
|
||
Tomoe Ozeki, Tetsuya Mouri, Hiroko Sugiura, Yuu Yano, and Kunie Miyosawa |
Paper: | pp. 756-767 | ||
Object Grasping Instructions to Support Robot by Laser Beam One Drag Operations |
|
||
Momonosuke Shintani, Yuta Fukui, Kosuke Morioka, Kenji Ishihata, Satoshi Iwaki, Tetsushi Ikeda, and Tim C. Lüth |
Paper: | pp. 768-776 | ||
Development of a Spoon Motion Navigation Algorithm for the Mealtime Assistant Simulator |
|
||
Atsushi Mitani and Masumi Muramatsu |
Paper: | pp. 777-783 | ||
Speech Analysis to Evaluate Robot-Assisted Recreation of Older Adults with Dementia |
|
||
Tomoko Nariai, Shiroh Itai, and Hiroaki Kojima |
Paper: | pp. 784-803 | ||
Use of Robotic Pet in a Distributed Layout Elderly Housing with Services: A Case Study on Elderly People with Cognitive Impairment |
|
||
Yoko Hori, Ken Kato, Mia Kobayashi, Yuriko Inoue, Kecheng Lai, Akitaka Sugishita, Yoshihiro Okamoto, Satoko Kamiya, and Takanori Shibata |
Paper: | pp. 804-813 | ||
An Electrolarynx Control Method Using Myoelectric Signals from the Neck |
|
||
Katsutoshi Oe |
Development Report: | pp. 814-825 | ||
Excretion Detection Systems with Gas Sensors – Development of Prototype Devices Integrating Sensor and Operation Functions – |
|
||
Shohei Sugano, Yoshimi Ui, Kazushiro Tanimoto, Kenta Nakano, and Ken Tomiyama |
Paper: | pp. 826-832 | ||
Unconstrained Measurement of Heart Rate Considering Harmonics of Respiratory Signal Using Flexible Tactile Sensor Sheet |
|
||
Kazuya Matsuo, Toshiharu Mukai, and Shijie Guo |
Paper: | pp. 833-842 | ||
Impedance Control Considering Velocity Saturation of a Series Elasticity System with a Motor |
|
||
Ren Fukui, Yasuhito Kusakabe, Ryojun Ikeura, and Soichiro Hayakawa |
Paper: | pp. 843-850 | ||
Ankle Joint Stretching Device Using Tension Rod for Self Rehabilitation |
|
||
Hideki Toda and Shin Sugihara |
Paper: | pp. 851-857 | ||
Facilitative Exercise for Surface Myoelectric Activity Using Robot Arm Control System – Training Scheme with Gradually Increasing Difficulty Level – |
|
||
Ryota Hayashi, Naoki Shimoda, Tetsuya Kinugasa, and Koji Yoshida |
Paper: | pp. 858-867 | ||
Classification of Care Assistive Technology Based on the Relationship Between Users and Technologies |
|
||
Hiroyasu Miwa, Kentaro Watanabe, and Marketta Niemelä |
Paper: | pp. 868-876 | ||
Evaluation of Muscle Activity and Human Standing Stability Index Using the Swash Plate in a Disturbance Application |
|
||
Tsutomu Togoe, Pham Hoang Tung, Koki Honda, Yasutaka Nakashima, and Motoji Yamamoto |
Paper: | pp. 877-886 | ||
Development of a Tele-Rehabilitation System Using an Upper Limb Assistive Device |
|
||
Eiichiro Tanaka, Wei-Liang Lian, Yun-Ting Liao, Hao Yang, Li-Ning Li, Hee-Hyol Lee, and Megumi Shimodozono |
Paper: | pp. 887-892 | ||
Development and Clinical Evaluation of Bed with Standing-Up Function |
|
||
Katsuhiro Manabe |
Letter: | pp. 893-899 | ||
Development of Transfer-Assisting Robot System Using Posture-Supporting Wear and Support Robot |
|
||
Fumio Mizuno, Kento Narita, and Sho Hamada |
Development Report: | pp. 900-910 | ||
Design of an Indoor Robotic Walking Care Device for Daily-Activity Activation of the Elderly |
|
||
Seonghee Jeong, Hiroki Aoyama, Satoshi Takahara, and Yoshiyuki Takaoka |
Paper: | pp. 911-918 | ||
User-Adaptive Brake Assist System for Rolling Walkers |
|
||
Tetsuya Hirotomi |
Paper: | pp. 919-926 | ||
Development and Control of Power-Assisted Lumbar Suit Based on Upper-Body Acceleration |
|
||
Hiroshi Suzuki, Ayaka Sumoto, Takahiro Kitajima, Akinobu Kuwahara, and Takashi Yasuno |
Paper: | pp. 927-934 | ||
Gait Rehabilitation System Using a Non-Wearing Type Pneumatic Power Assist Device |
|
||
Masashi Yokota and Masahiro Takaiwa |
Regular Papers
Paper: | pp. 935-943 | ||
A Soft Needle Gripper Capable of Grasping and Piercing for Handling Food Materials |
|
||
Zhongkui Wang, Yui Makiyama, and Shinichi Hirai |
Paper: | pp. 944-954 | ||
New Method of Path Optimization for Medical Logistics Robots |
|
||
Hui Jin, Qingsong He, Miao He, Fangchao Hu, and Shiqing Lu |
Paper: | pp. 955-967 | ||
Design of Fin-Curvature-Based Feedback Controller for Efficient Swimming |
|
||
Fumiaki Nose, Yuichiro Sueoka, Daisuke Nakanishi, Yasuhiro Sugimoto, and Koichi Osuka |
Development Report: | pp. 968-974 | ||
Soft Robotic Gripper Based on Multi-Layers of Dielectric Elastomer Actuators |
|
||
Witchuda Thongking, Ardi Wiranata, Ayato Minaminosono, Zebing Mao, and Shingo Maeda |
No.3
(Jun)
Special Issue on Bio-Logging and Robotics
Special Issue on Activity of Research Center – Osaka University: Komatsu MIRAI Construction Equipment Cooperative Research Center
Special Issue on Bio-Logging and Robotics
Editorial: | p. 445 | |
Bio-Logging and Robotics |
| |
Koichi Osuka, Koichi Hashimoto, Midori Sakura, and Shizuko Hiryu | ||
In the studies done to date on the swarm behaviors of animals, many different observational techniques have been developed, indicating the importance of such detailed observations. The techniques of researchers aiming to capture the swarm behavior of animals, which is normally visually unobservable, have included attaching microsensors to honey bees or ants and data loggers (micro recorders) to birds or mammals. Such techniques, collectively known as “bio-logging,” can go far in clarifying why we feel animals that exhibit swarm behaviors seem to have a sort of collective intelligence, or “swarm intelligence.” Furthermore, studies on the swarm behaviors of animals may provide important clues to researchers in the field of swarm robotics. It is in this context that this special issue presents papers on bio-logging technologies, the collective behaviors of animals, and various advanced measurement technologies related to them. This special issue consists of one review article and 14 research papers. The subjects cover a wide range of areas, including control engineering, data science, and ecology. Thus, bio-logging is an interdisciplinary area that can expect to see much growth in the near future. The editors are confident that this issue will greatly contribute to further progress in the field of bio-logging. |
Paper: | pp. 446-456 | ||
Development of Data Logger Separator for Bio-Logging of Wild Seabirds |
|
||
Takuma Abe, Natsumi Kubo, Kazuki Abe, Hirokazu Suzuki, Yuichi Mizutani, Ken Yoda, Riichiro Tadakuma, and Yuichi Tsumaki |
Paper: | pp. 457-465 | ||
The Lifelog Monitoring System for Honeybees: RFID and Camera Recordings in an Observation Hive |
|
||
Hiroyuki Ai and Shinya Takahashi |
Paper: | pp. 466-474 | ||
Seabird Biologging System with Compact Waterproof Airflow Sensor |
|
||
Hidetoshi Takahashi, Masaru Naruoka, Yoshinobu Inada, and Katsufumi Sato |
Paper: | pp. 475-483 | ||
Logger Attaching System for Sperm Whales Using a Drone |
|
||
Ryota Murakami, Takumi Toyoshima, Daichi Furusawa, Masaru Suzuki, Kazunari Masumoto, Sho Owada, Yuichi Tsumaki, and Kyoichi Mori |
Paper: | pp. 484-493 | ||
Vision-Based Finger Tapping Detection Without Fingertip Observation |
|
||
Shotaro Narita, Shingo Kagami, and Koichi Hashimoto |
Paper: | pp. 494-504 | ||
Auditory Virtual Reality for Insect Phonotaxis |
|
||
Noriyasu Ando, Hisashi Shidara, Naoto Hommaru, and Hiroto Ogawa |
Review: | pp. 505-514 | ||
Data-Driven Analysis for Understanding Team Sports Behaviors |
|
||
Keisuke Fujii |
Paper: | pp. 515-525 | ||
Localization of Flying Bats from Multichannel Audio Signals by Estimating Location Map with Convolutional Neural Networks |
|
||
Kazuki Fujimori, Bisser Raytchev, Kazufumi Kaneda, Yasufumi Yamada, Yu Teshima, Emyo Fujioka, Shizuko Hiryu, and Toru Tamaki |
Paper: | pp. 526-536 | ||
Application of Inertial and GNSS Integrated Navigation to Seabird Biologging |
|
||
Masaru Naruoka, Yusuke Goto, Henri Weimerskirch, Takashi Mukai, Taichi Sakamoto, Kentaro Q. Sakamoto, and Katsufumi Sato |
Paper: | pp. 537-546 | ||
Investigation of Preliminary Motions from a Static State and Their Predictability |
|
||
Chaoshun Xu, Masahiro Fujiwara, Yasutoshi Makino, and Hiroyuki Shinoda |
Paper: | pp. 547-555 | ||
Pose Estimation of Swimming Fish Using NACA Airfoil Model for Collective Behavior Analysis |
|
||
Hitoshi Habe, Yoshiki Takeuchi, Kei Terayama, and Masa-aki Sakagami |
Paper: | pp. 556-563 | ||
Three-Dimensional Trajectory Construction and Observation of Group Behavior of Wild Bats During Cave Emergence |
|
||
Emyo Fujioka, Mika Fukushiro, Kazusa Ushio, Kyosuke Kohyama, Hitoshi Habe, and Shizuko Hiryu |
Paper: | pp. 564-571 | ||
Absence of Jamming Avoidance and Flight Path Similarity in Paired Bent-Winged Bats, Miniopterus Fuliginosus |
|
||
Kazuma Hase, Saori Sugihara, Seiya Oka, and Shizuko Hiryu |
Paper: | pp. 572-581 | ||
A Pilot Study of the Effects of Human Intervention on Canine Group Movement Behavior |
|
||
Miho Nagasawa, Satomi Kuramochi, Azumi Hamamoto, Toshitaka Yamakawa, and Takefumi Kikusui |
Paper: | pp. 582-589 | ||
Influence of Labor Conditions and Interaction Among Individuals on Circadian Activity Rhythms in the Ant Camponotus Japonicus |
|
||
Masashi Shiraishi, Takumi Odan, Osamu Yamanaka, and Hiraku Nishimori |
Special Issue on Activity of Research Center – Osaka University: Komatsu MIRAI Construction Equipment Cooperative Research Center
Institute Overview: | pp. 592-598 | ||
Osaka University: Komatsu “MIRAI” (Japanese for “Future”) Construction Equipment Cooperative Research Center |
|
||
Koichi Osuka and Youjirou Ohbatake |
Development Report: | pp. 599-603 | ||
Perception of Vestibular Sensation During Turning Operation of Construction Machine |
|
||
Koji Okuda, Youjirou Ohbatake, and Daisuke Kondo |
Development Report: | pp. 604-609 | ||
Projection Screen with Wide-FOV and Motion Parallax Display for Teleoperation of Construction Machinery |
|
||
Daisuke Kondo |
Development Report: | pp. 610-617 | ||
FST-Convoy: A Leader Tracking Control of Vehicles Connected by Shape Sensor FST |
|
||
Daisuke Ura, Kotaro Masumoto, and Koichi Osuka |
Regular Papers
Paper: | pp. 619-628 | ||
Optimal Muscular Arrangement Using Genetic Algorithm for Musculoskeletal Potential Method with Muscle Viscosity |
|
||
Hitoshi Kino, Hiroaki Ochi, and Kenji Tahara |
Paper: | pp. 629-642 | ||
Tracking and Visualizing Signs of Degradation for Early Failure Prediction of Rolling Bearings |
|
||
Sana Talmoudi, Tetsuya Kanada, and Yasuhisa Hirata |
Paper: | pp. 643-652 | ||
Stabilization Control of Inverted Two-Wheeled Luggage Transport Vehicle Using a Kalman Filter-Based Disturbance Observer |
|
||
Hironori Matsubara, Yuki Nagatsu, and Hideki Hashimoto |
Paper: | pp. 653-664 | ||
Characteristics of Pneumatic Artificial Rubber Muscle Using Two Shape-Memory Polymer Sheets |
|
||
Kazuto Takashima, Daiki Iwamoto, Shun Oshiro, Toshiro Noritsugu, and Toshiharu Mukai |
Paper: | pp. 665-675 | ||
Gap Traversing Motion via a Hexapod Tracked Mobile Robot Based on Gap Width Detection |
|
||
Taiga Sasaki and Toyomi Fujita |
Paper: | pp. 676-685 | ||
Proposal of Wheeled Gait-Training Walker with Dual-Assist Arms and Preliminary Pelvis-Handling Control |
|
||
Kenji Uegami, Hiroki Aoyama, Katsushi Ogawa, Kazuo Yonenobu, and Seonghee Jeong |
Paper: | pp. 686-697 | ||
Vision-Based Sensing Systems for Autonomous Driving: Centralized or Decentralized? |
|
||
Manato Hirabayashi, Yukihiro Saito, Kosuke Murakami, Akihito Ohsato, Shinpei Kato, and Masato Edahiro |
No.2
(Apr)
Special Issue on Novel Technology of Autonomous Drone
Special Issue on Novel Technology of Autonomous Drone
Editorial: | p. 195 | |
Novel Technology of Autonomous Drone |
| |
Satoshi Suzuki and Kenzo Nonami | ||
In the past three years, there has been rapid progress in the use of drones in society. Drones, which were previously used only experimentally in various industrial fields, are now being used in earnest in everyday operations. Drones are becoming indispensable tools in several industrial fields, such as surveying, inspection, and agriculture. At the same time, there has also been dramatic progress in autonomous drone technology. With the advancement of image processing, simultaneous localization and mapping (SLAM), and artificial intelligence technologies, many intelligent drones that apply these technologies are being researched. At the same time, our knowledge of multi-rotor helicopters, the main type of drones, has continued to deepen. As the strengths and weaknesses of multi-rotor helicopters have gradually become clearer, drones with alternate structures, such as flapping-wing drones, have come to attract renewed attention. In addition, the range of applications for drones, including passenger drones, has expanded greatly, and research on unprecedented drone operations, as well as research on systems and controls to ensure operational safety, is actively being conducted. This special issue contains the latest review, research papers, and development reports on autonomous drones classified as follows from the abovementioned perspectives. We hope that the readers will actively promote the use of drones in their own research and work, based on the information obtained from this special issue. |
Review: | pp. 196-204 | ||
Aerial Manipulation Using Multirotor UAV: A Review from the Aspect of Operating Space and Force |
|
||
Robert Ladig, Hannibal Paul, Ryo Miyazaki, and Kazuhiro Shimonomura |
Paper: | pp. 205-215 | ||
The WiFly: Flapping-Wing Small Unmanned Aerial Vehicle with Center-of-Gravity Shift Mechanism |
|
||
Taichi Nozawa, Keita Nakamura, Ryosuke Katsuyama, Shunki Kuwajima, Ziyan Li, Akira Nomizu, Riku Okamoto, Toshitatsu Munakata, and Takanobu Watanabe |
Paper: | pp. 216-222 | ||
Motion Analysis of Butterfly-Style Flapping Robot Using CFD Based on 3D-CAD Model and Experimental Flight Data |
|
||
Keisuke Sanuki and Taro Fujikawa |
Paper: | pp. 223-230 | ||
Development of Landing Rebound Reduction Mechanism Utilizing Magnetic Damper for Multicopters |
|
||
Kazuki Niwa, Susumu Hara, and Kikuko Miyata |
Paper: | pp. 231-241 | ||
Aerial Manipulator Control Method Based on Generalized Jacobian |
|
||
Takahiro Ikeda, Kenichi Ohara, Akihiko Ichikawa, Satoshi Ashizawa, Takeo Oomichi, and Toshio Fukuda |
Paper: | pp. 242-253 | ||
Indoor Unmanned Aerial Vehicle Navigation System Using LED Panels and QR Codes |
|
||
Hiroyuki Ukida |
Paper: | pp. 254-262 | ||
Position Identification Using Image Processing for UAV Flights in Martian Atmosphere |
|
||
Shin-Ichiro Higashino, Toru Teruya, and Kazuhiko Yamada |
Paper: | pp. 263-273 | ||
Real-Time Visual Feedback Control of Multi-Camera UAV |
|
||
Dongqing He, Hsiu-Min Chuang, Jinyu Chen, Jinwei Li, and Akio Namiki |
Paper: | pp. 274-282 | ||
Feedback Control for a Drone with a Suspended Load via Hierarchical Linearization |
|
||
Kazuma Sekiguchi, Wataru Eikyu, and Kenichiro Nonaka |
Paper: | pp. 283-291 | ||
Optimal Position and Attitude Control of Quadcopter Using Stochastic Differential Dynamic Programming with Input Saturation Constraints |
|
||
Satoshi Satoh, Hironori Saijo, and Katsuhiko Yamada |
Paper: | pp. 292-300 | ||
Landing Site Detection for UAVs Based on CNNs Classification and Optical Flow from Monocular Camera Images |
|
||
Chihiro Kikumoto, Yoh Harimoto, Kazuki Isogaya, Takeshi Yoshida, and Takateru Urakubo |
Paper: | pp. 301-312 | ||
Development of a Remote-Controlled Drone System by Using Only Eye Movements: Design of a Control Screen Considering Operability and Microsaccades |
|
||
Atsunori Kogawa, Moeko Onda, and Yoshihiro Kai |
Paper: | pp. 313-321 | ||
Semi-Automatic Visual Support System with Drone for Teleoperated Construction Robot |
|
||
Takahiro Ikeda, Naoyuki Bando, and Hironao Yamada |
Paper: | pp. 322-328 | ||
Verification of Model Accuracy and Photo Shooting Efficiency of Large-Scale SfM for Flight Path Calculation |
|
||
Sho Yamauchi and Keiji Suzuki |
Paper: | pp. 329-338 | ||
Small Flying Object Classifications Based on Trajectories and Support Vector Machines |
|
||
Jalvin Jia Xiang Chan, Sutthiphong Srigrarom, Jiawei Cao, Pengfei Wang, and Photchara Ratsamee |
Paper: | pp. 339-347 | ||
Quadrotor Drone Hovering in Ground Effect |
|
||
Yasutada Tanabe, Hideaki Sugawara, Shigeru Sunada, Koichi Yonezawa, and Hiroshi Tokutake |
Paper: | pp. 348-362 | ||
Unmanned Aircraft System Traffic Management (UTM) Simulation of Drone Delivery Models in 2030 Japan |
|
||
Atsushi Oosedo, Hiroaki Hattori, Ippei Yasui, and Kenya Harada |
Development Report: | pp. 363-370 | ||
Propagation Measurements of Multi-Hop Command and Telemetry Communications System in the 169 MHz Band for Drones |
|
||
Ryu Miura, Toshinori Kagawa, Fumie Ono, Lin Shan, Takashi Matsuda, and Fumihide Kojima |
Development Report: | pp. 371-378 | ||
Precision Flight Drones with RTK-GNSS |
|
||
Masafumi Miwa and Tsuneo Ushiroda |
Regular Papers
Paper: | pp. 379-385 | ||
Optimal Swing Support During Walking Using Wireless Pneumatic Artificial Muscle Driver |
|
||
Haruki Toda, Mitsunori Tada, Tsubasa Maruyama, and Yuichi Kurita |
Paper: | pp. 386-399 | ||
FPGA Implementation of a Binarized Dual Stream Convolutional Neural Network for Service Robots |
|
||
Yuma Yoshimoto and Hakaru Tamukoh |
Paper: | pp. 400-409 | ||
Development of a Fish-Like Robot with a Continuous and High Frequency Snap-Through Buckling Mechanism Using a Triangular Cam |
|
||
Daisuke Nakanishi, Shoya Kobayashi, Kiichi Obara, Shotaro Matsumura, and Yuichiro Sueoka |
Paper: | pp. 410-420 | ||
Analysis of Autonomous Coordination Between Actuators in the Antagonist Musculoskeletal Model |
|
||
Takahiro Goto, Yasuhiro Sugimoto, Daisuke Nakanishi, Keisuke Naniwa, and Koichi Osuka |
Development Report: | pp. 421-431 | ||
Development of Condition Monitoring System for Electric Resistance Spot Welding Used to Manufacture Railway Car Bodies |
|
||
Masashi Oikawa, Kentaro Atsumi, Yosuke Otsuka, and Naoki Kawada |
No.1
(Feb)
Congratulations! JRM Best Paper Award 2020
Special Issue on Activity of Research Center – Toyohashi University of Technology: Center for Human-Robot Symbiosis Research
Congratulations! JRM Best Paper Award 2020
Award: | pp. 1-2 | |
Congratulations! Journal of Robotics and Mechatronics Best Paper Award 2020 |
| |
Editorial Office |
Special Issue on Activity of Research Center – Toyohashi University of Technology: Center for Human-Robot Symbiosis Research
Institute Overview: | pp. 6-10 | ||
Toyohashi University of Technology: The Direction the Center for Human-Robot Symbiosis Research Should Take and its Achievements to Date |
|
||
Kazuhiko Terashima |
Paper: | pp. 11-23 | ||
Generation of Optimal Coverage Paths for Mobile Robots Using Hybrid Genetic Algorithm |
|
||
Tobias Rainer Schäfle, Marcel Mitschke, and Naoki Uchiyama |
Development Report: | pp. 24-32 | ||
Design and Evaluation of Attention Guidance Through Eye Gazing of “NAMIDA” Driving Agent |
|
||
Shintaro Tamura, Naoki Ohshima, Komei Hasegawa, and Michio Okada |
Paper: | pp. 33-43 | ||
Development and Experimental Verification of a Person Tracking System of Mobile Robots Using Sensor Fusion of Inertial Measurement Unit and Laser Range Finder for Occlusion Avoidance |
|
||
Kazuhiro Funato, Ryosuke Tasaki, Hiroto Sakurai, and Kazuhiko Terashima |
Regular Papers
Review: | pp. 45-68 | ||
Soft Robotics: Research, Challenges, and Prospects |
|
||
Wenchuan Zhao, Yu Zhang, and Ning Wang |
Paper: | pp. 69-77 | ||
Study on Automatic Operation of Manual Wheelchair Prototype and Basic Experiments |
|
||
Kazuteru Tobita, Yoshihito Shikanai, and Kazuhiro Mima |
Paper: | pp. 78-87 | ||
Study on Pipetting Motion Optimization of Automatic Spheroid Culture System for Spheroid Formation |
|
||
Takeshi Shimoto, Chihiro Teshima, Toshiki Watanabe, Xiu-Ying Zhang, Atsushi Ishikawa, Hidehiko Higaki, and Koichi Nakayama |
Paper: | pp. 88-96 | ||
Human-Like Robust Adaptive PD Based Human Gait Tracking for Exoskeleton Robot |
|
||
Aihui Wang, Ningning Hu, Jun Yu, Junlan Lu, Yifei Ge, and Yan Wang |
Paper: | pp. 97-107 | ||
Effects of Presenting People Flow Information by Vibrotactile Stimulation for Visually Impaired People on Behavior Decision |
|
||
Kanon Fujino and Mihoko Niitsuma |
Paper: | pp. 108-118 | ||
Stabilization System for UAV Landing on Rough Ground by Adaptive 3D Sensing and High-Speed Landing Gear Adjustment |
|
||
Mikihiro Ikura, Leo Miyashita, and Masatoshi Ishikawa |
Paper: | pp. 119-128 | ||
Verification of Acoustic-Wave-Oriented Simple State Estimation and Application to Swarm Navigation |
|
||
Tomoha Kida, Yuichiro Sueoka, Hiro Shigeyoshi, Yusuke Tsunoda, Yasuhiro Sugimoto, and Koichi Osuka |
Paper: | pp. 129-140 | ||
Modulation of Velocity Perception by Engine Vibration While Driving |
|
||
Motoki Tachiiri, Yoshihiro Tanaka, and Akihito Sano |
Paper: | pp. 141-150 | ||
300-N Class Convex-Based Telescopic Manipulator and Trial for 3-DOF Parallel Mechanism Robot |
|
||
Takashi Kei Saito, Kento Onodera, Riku Seino, Takashi Okawa, and Yasushi Saito |
Development Report: | pp. 151-157 | ||
Development of Testbed AUV for Formation Control and its Fundamental Experiment in Actual Sea Model Basin |
|
||
Akihiro Okamoto, Motonobu Imasato, Shunka C. Hirao, Hidenori Sekiguchi, Takahiro Seta, Masahiko Sasano, and Toshifumi Fujiwara |
Development Report: | pp. 158-171 | ||
Study of Neural-Kinematics Architectures for Model-Less Calibration of Industrial Robots |
|
||
Monica Tiboni, Giovanni Legnani, and Nicola Pellegrini |
Development Report: | pp. 172-179 | ||
Development of the Second Prototype of an Oral Care Simulator |
|
||
Tomomi Daigo, Masumi Muramatsu, and Atsushi Mitani |
Vol.32 (2020)
No.6
(Dec)
Special Issue on Real World Robot Challenge in Tsukuba and Osaka
Special Issue on Activity of Research Center – The University of Tokyo: Corporate Sponsored Research Program “Construction System Management for Innovation”
Special Issue on Real World Robot Challenge in Tsukuba and Osaka
Editorial: | p. 1103 | |
Real World Robot Challenge in Tsukuba and Osaka |
| |
Hisashi Date and Tomohito Takubo | ||
The Tsukuba Challenge is an open experiment of autonomous mobile robots in the real world. In its third stage since 2018, it is now to be held on a new course that starts at the Tsukuba City Hall. New tasks that require functions expected for autonomous travel in the real world have now been added, including passing checkpoints announced a day before the event, starting two vehicles simultaneously, traveling in an unmeasured environment, and strictly observing stop lines in the course. Also, in the spirit of the Tsukuba Challenge, the Nakanoshima Challenge, an open demonstration experiment project, has been held in the city of Osaka since 2018. As the only event in which autonomous mobile robots travel in the urban area of Osaka, the Nakanoshima Challenge is expected to identify new issues peculiar to autonomous navigation in real urban environments and to find solutions to them. This special issue includes a review paper on the Tsukuba Challenge, four research papers on the results of experiments done in the Tsukuba Challenge, four research papers related to the Nakanoshima Challenge, and three development reports. This special issue provides its readers with the frontline issues and the current status of development of autonomous mobile robots in real-world environments. We hope that the innovative efforts presented in this special issue will contribute to the development of science and industry. |
Review: | pp. 1104-1111 | ||
Tsukuba Challenge 2019: Task Settings and Experimental Results |
|
||
Yoshitaka Hara, Tetsuo Tomizawa, Hisashi Date, Yoji Kuroda, and Takashi Tsubouchi |
Paper: | pp. 1112-1120 | ||
Development of Edge-Node Map Based Navigation System Without Requirement of Prior Sensor Data Collection |
|
||
Kazuki Takahashi, Jumpei Arima, Toshihiro Hayata, Yoshitaka Nagai, Naoya Sugiura, Ren Fukatsu, Wataru Yoshiuchi, and Yoji Kuroda |
Paper: | pp. 1121-1136 | ||
Automatic Generation of Multidestination Routes for Autonomous Wheelchairs |
|
||
Yusuke Mori and Katashi Nagao |
Paper: | pp. 1137-1153 | ||
Visual Navigation Based on Semantic Segmentation Using Only a Monocular Camera as an External Sensor |
|
||
Ryusuke Miyamoto, Miho Adachi, Hiroki Ishida, Takuto Watanabe, Kouchi Matsutani, Hayato Komatsuzaki, Shogo Sakata, Raimu Yokota, and Shingo Kobayashi |
Paper: | pp. 1154-1163 | ||
Prototyping Using a Mobile Robot Platform Equipped with Low-End In-Wheel Motors |
|
||
Susumu Tarao, Yasunori Fujiwara, Naoaki Tsuda, and Soichiro Takata |
Paper: | pp. 1164-1172 | ||
Toward Autonomous Garbage Collection Robots in Terrains with Different Elevations |
|
||
Renato Miyagusuku, Yuki Arai, Yasunari Kakigi, Takumi Takebayashi, Akinori Fukushima, and Koichi Ozaki |
Paper: | pp. 1173-1182 | ||
Autonomous Mobile Robot for Outdoor Slope Using 2D LiDAR with Uniaxial Gimbal Mechanism |
|
||
Shunya Hara, Toshihiko Shimizu, Masanori Konishi, Ryotaro Yamamura, and Shuhei Ikemoto |
Paper: | pp. 1183-1192 | ||
Outdoor Autonomous Navigation Utilizing Proximity Points of 3D Pointcloud |
|
||
Yuichi Tazaki and Yasuyoshi Yokokohji |
Paper: | pp. 1193-1199 | ||
Outdoor Human Detection with Stereo Omnidirectional Cameras |
|
||
Shunya Tanaka and Yuki Inoue |
Development Report: | pp. 1200-1210 | ||
Garbage Detection Using YOLOv3 in Nakanoshima Challenge |
|
||
Jingwei Xue, Zehao Li, Masahito Fukuda, Tomokazu Takahashi, Masato Suzuki, Yasushi Mae, Yasuhiko Arai, and Seiji Aoyagi |
Development Report: | pp. 1211-1218 | ||
Rapid Development of a Mobile Robot for the Nakanoshima Challenge Using a Robot for Intelligent Environments |
|
||
Tomohiro Umetani, Yuya Kondo, and Takuma Tokuda |
Development Report: | pp. 1219-1228 | ||
Proposal of Robot Software Platform with High Sustainability |
|
||
Masahito Fukuda, Tomokazu Takahashi, Masato Suzuki, Yasushi Mae, Yasuhiko Arai, and Seiji Aoyagi |
Special Issue on Activity of Research Center – The University of Tokyo: Corporate Sponsored Research Program “Construction System Management for Innovation”
Institute Overview: | pp. 1230-1232 | ||
The University of Tokyo: Corporate Sponsored Research Program “Construction System Management for Innovation” |
|
||
Keiji Nagatani, Atsushi Yamashita, and Kazumasa Ozawa |
Paper: | pp. 1233-1243 | ||
Arbitrary Viewpoint Visualization for Teleoperated Hydraulic Excavators |
|
||
Tatsuki Nagano, Ryosuke Yajima, Shunsuke Hamasaki, Keiji Nagatani, Alessandro Moro, Hiroyuki Okamoto, Genki Yamauchi, Takeshi Hashimoto, Atsushi Yamashita, and Hajime Asama |
Paper: | pp. 1244-1258 | ||
Utilization of Unmanned Aerial Vehicle, Artificial Intelligence, and Remote Measurement Technology for Bridge Inspections |
|
||
Pang-jo Chun, Ji Dang, Shunsuke Hamasaki, Ryosuke Yajima, Toshihiro Kameda, Hideki Wada, Tatsuro Yamane, Shota Izumi, and Keiji Nagatani |
Regular Papers
Paper: | pp. 1259-1267 | ||
Numerical Investigation on Hydrodynamic Performance of a Ducted Propeller for Vectored Underwater Robot |
|
||
Rongmin Zhang and Shasha Zhou |
Paper: | pp. 1268-1278 | ||
Study on Arbitrary Direction Navigation System for Autonomous Multirotor with Arbitrary Configuration of Rotors |
|
||
Nobuto Hirakoso, Ryoichiro Tamura, and Yoichi Shigematsu |
Paper: | pp. 1279-1291 | ||
Tomato Growth State Map for the Automation of Monitoring and Harvesting |
|
||
Takuya Fujinaga, Shinsuke Yasukawa, and Kazuo Ishii |
Development Report: | pp. 1292-1300 | ||
Development of a Robot Simulator for Decommissioning Tasks Utilizing Remotely Operated Robots |
|
||
Kenta Suzuki and Kuniaki Kawabata |
No.5
(Oct)
Special Issue on Fluid Powered System and its Application
Special Issue on Fluid Powered System and its Application
Editorial: | p. 853 | |
Fluid Powered System and its Application |
| |
Masahiro Takaiwa, Toshiro Noritsugu, Hideyuki Tsukagoshi, Kazuhisa Ito, and Yutaka Tanaka | ||
It is well known that fluid-powered systems are used practically in almost all industrial fields, including construction, manufacturing, transportation, among others. Nowadays, the rapid growth in the development of the mechanical elements in fluid-powered systems, such as control valves, actuators, and sensors, and the rapid growth in control strategies have given rise to pioneering in some novel application fields in ways that were thought to be impossible a decade ago. High-precision positioning control using the compressible fluid of pneumatic driving systems and multi-legged robots equipped with standalone hydraulic components are simple examples. Moreover, soft robotics based on fluid-powered technologies has attracted attention not only in academia but also in human support fields, which will become more important as Japan’s society ages. This special issue on “Fluid Powered System and its Application” includes one review paper and 22 other interesting papers related to the state of the art in the development of mechanical elements, total drive systems, motion control theory, and concrete applications of fluid-powered systems. We thank all of the authors and reviewers of the papers and hope this special issue helps readers to develop fluid powered systems that will contribute to developments in the academia and industry. |
Review: | pp. 854-862 | ||
New Robotics Pioneered by Fluid Power |
|
||
Koichi Suzumori |
Paper: | pp. 863-875 | ||
Proposal of Motion Judgment Algorithm Based on Joint Angle of Variable Elastic Assist Suit with High Back Drivability |
|
||
Seigo Kimura, Ryuji Suzuki, Katsuki Machida, Rie Nishihama, Manabu Okui, and Taro Nakamura |
Paper: | pp. 876-884 | ||
Investigation of Accumulator Parameters for a Novel Hybrid Architecture |
|
||
Seiji Hijikata, Kazuhisa Ito, and Hubertus Murrenhoff |
Paper: | pp. 885-893 | ||
Development of Semi-Crouching Assistive Device Using Pneumatic Artificial Muscle |
|
||
Naoki Saito, Daisuke Furukawa, Toshiyuki Satoh, and Norihiko Saga |
Paper: | pp. 894-902 | ||
Flexible Pneumatic Bending Actuator for a Robotic Tongue |
|
||
Nobutsuna Endo, Yuta Kizaki, and Norihiro Kamamichi |
Paper: | pp. 903-910 | ||
A Sliding Mode Controller Using an LS-SVM Model for a Water-Hydraulic Artificial Rubber Muscle |
|
||
Takahiro Kosaki, Yuta Kawahara, and Shigang Li |
Paper: | pp. 911-922 | ||
Experimental Study on Critical Design of Electro-Hydrostatic Actuators Small in Size and Light in Weight |
|
||
Mitsuo Komagata, Tianyi Ko, Ko Yamamoto, and Yoshihiko Nakamura |
Paper: | pp. 923-930 | ||
Development of Pneumatically Driven Hand Capable of Grasping Flexible Objects |
|
||
Kotaro Nishikawa, Kentaro Hirata, and Masahiro Takaiwa |
Paper: | pp. 931-938 | ||
Development of a Tetrahedral-Shaped Soft Robot Arm as a Wrist Rehabilitation Device Using Extension Type Flexible Pneumatic Actuators |
|
||
Wei-Hang Tian, Cian-Cheng Jhan, Misaki Inokuma, Tetsuya Akagi, Shujiro Dohta, and So Shimooka |
Paper: | pp. 939-946 | ||
Optimization of the Electrode Arrangement and Reliable Fabrication of Flexible EHD Pumps |
|
||
Yumeta Seki, Yu Kuwajima, Hiroki Shigemune, Yuhei Yamada, and Shingo Maeda |
Paper: | pp. 947-957 | ||
Study on Human Behavior Classification by Using High-Performance Shoes Equipped with Pneumatic Actuators |
|
||
Yasuhiro Hayakawa, Yuta Kimata, and Keisuke Kida |
Paper: | pp. 958-976 | ||
Disposable Robotic Finger Driven Pneumatically by Flat Tubes and a Hollow Link Mechanism |
|
||
Junya Tanaka and Nobuto Matsuhira |
Paper: | pp. 977-983 | ||
Viscosity Control of Magnetorheological Fluid by Power Saving Magnetizing Mechanism Using Movement of Permanent Magnet |
|
||
Jumpei Kawasaki, Yuki Nakamura, and Yasukazu Sato |
Paper: | pp. 984-993 | ||
Development of Hydraulic Pump Drive System Using Switched Reluctance Motor with Servo Function |
|
||
Ha Tham Phan, Seiya Itagaki, and Yasukazu Sato |
Paper: | pp. 994-999 | ||
Flowrate Measurement in a Pipe Using Kalman-Filtering Laminar Flowmeter |
|
||
Kazushi Sanada |
Paper: | pp. 1000-1009 | ||
Load Reduction Control on Tool-Insertion Port for Laparoscopic Surgical Robot Using Semi-Active Joints |
|
||
Koki Aizawa, Daisuke Haraguchi, and Kotaro Tadano |
Paper: | pp. 1010-1018 | ||
Active Cloth Fabricated by a Flat String Machine and its Application to a Safe Wheelchair System |
|
||
Makoto Takada, Shuichi Wakimoto, Takero Oshikawa, Takeji Ueda, and Takefumi Kanda |
Paper: | pp. 1019-1026 | ||
Concept and Prototype of Soft Actuator for Liquid Nitrogen Temperature Environments |
|
||
Daisuke Yamaguchi, Tatsuya Hanaki, Yuji Ishino, Masayuki Hara, Masaya Takasaki, and Takeshi Mizuno |
Paper: | pp. 1027-1033 | ||
Physical Table Identification for Nominal Hydraulic Cylinders and its Application to Pressure Estimation |
|
||
Satoru Sakai, Kazuki Nagai, and Yasuki Takahashi |
Paper: | pp. 1034-1043 | ||
Realistic and Highly Functional Pediatric Externally Powered Prosthetic Hand Using Pneumatic Soft Actuators |
|
||
Hironari Taniguchi, Nobuo Takemoto, Ren Yakami, Shuichi Wakimoto, Takero Oshikawa, Kosuke Morinaga, and Takefumi Kanda |
Paper: | pp. 1044-1051 | ||
Development of Finger-Wrist Rehabilitation Device Using Pneumatically Driven Parallel Sticks |
|
||
Yasuko Matsui, Daiki Hosomi, and Masahiro Takaiwa |
Paper: | pp. 1052-1060 | ||
Development of Non-Wearing Type Pneumatic Power Assist Device – Basic Concept and Performance Evaluation – |
|
||
Masashi Yokota and Masahiro Takaiwa |
Paper: | pp. 1061-1070 | ||
Design and Modeling of Soft Pneumatic Helical Actuator with High Contraction Ratio |
|
||
Peizheng Yuan, Ginjiro Kawano, and Hideyuki Tsukagoshi |
Regular Papers
Paper: | pp. 1071-1079 | ||
Pallet Handling System with an Autonomous Forklift for Outdoor Fields |
|
||
Ryosuke Iinuma, Yusuke Kojima, Hiroyuki Onoyama, Takanori Fukao, Shingo Hattori, and Yasunori Nonogaki |
Paper: | pp. 1080-1087 | ||
Development of Ankle Support Shoes with Elastomer-Embedded Flexible Joints |
|
||
Takehito Kikuchi, Taiki Oshimoto, Isao Abe, Kenichiro Tanaka, Yasue Asaumi, and Naoki Chijiwa |
No.4
(Aug)
Review on Autonomous Underwater Vehicle in Japan
Special Issue on Brain Machine/Computer Interface and its Application
Review on Autonomous Underwater Vehicle in Japan
Review: | pp. 713-721 | ||
Development Timeline of the Autonomous Underwater Vehicle in Japan |
|
||
Tamaki Ura |
Special Issue on Brain Machine/Computer Interface and its Application
Editorial: | p. 723 | |
Brain Machine/Computer Interface and its Application |
| |
Shoichiro Fujisawa, Minoru Fukumi, Jianting Cao, Yasue Mitsukura, and Shin-ichi Ito | ||
Brain machine/computer interface (BMI/BCI) technologies are based on analyzing brain activity to control machines and support the communication of commands and messages. To sense brain activities, a functional NIRS and electroencephalogram (EEG) that has been developed for that purpose is often employed. Analysis techniques and algorithms for the NIRS and EEG signals have also been created, and human support systems in the form of BMI/BCI applications have been developed. In the field of rehabilitation, BMI/BCI is used to control environment control systems and electric wheelchairs. In medicine, BMI/BCI is used to assist in communications for patient support. In industry, BMI/BCI is used to analyze sensibility and develop novel games. This special issue on Brain Machine/Computer Interface and its Application includes six interesting papers that cover the following topics: an EEG analysis method for human-wants detection, cognitive function using EEG analysis, auditory P300 detection, a wheelchair control BCI using SSVEP, a drone control BMI based on SSVEP that uses deep learning, and an improved CMAC model. We thank all authors and reviewers of the papers and the Editorial Board of Journal of Robotics and Mechatronics for its help with this special issue. |
Paper: | pp. 724-730 | ||
Human-Wants Detection Based on Electroencephalogram Analysis During Exposure to Music |
|
||
Shin-ichi Ito, Momoyo Ito, and Minoru Fukumi |
Paper: | pp. 731-737 | ||
Convolutional Neural Network Transfer Learning Applied to the Affective Auditory P300-Based BCI |
|
||
Akinari Onishi |
Paper: | pp. 738-744 | ||
High Accuracy and Short Delay 1ch-SSVEP Quadcopter-BMI Using Deep Learning |
|
||
Kazumi Ishizuka, Nobuaki Kobayashi, and Ken Saito |
Paper: | pp. 745-752 | ||
Method to Expand the CMAC Model to Composite-Type Model |
|
||
Jiro Morimoto, Makoto Horio, Yoshio Kaji, Junji Kawata, Mineo Higuchi, and Shoichiro Fujisawa |
Paper: | pp. 753-760 | ||
EEG Variations During Measurement of Cognitive Functions Using Biosignal Acquisition Toolkit |
|
||
Yoshio Kaji, Yoshikazu Yamamoto, Junji Kawata, Jiro Morimoto, and Shoichiro Fujisawa |
Development Report: | pp. 761-767 | ||
Indirect Control of an Autonomous Wheelchair Using SSVEP BCI |
|
||
Danny Wee-Kiat Ng and Sing Yau Goh |
Regular Papers
Paper: | pp. 769-779 | ||
Proposal of a Behavioral Model for Robots Supporting Learning According to Learners’ Learning Performance |
|
||
Ryo Yoshizawa, Felix Jimenez, and Kazuhito Murakami |
Paper: | pp. 780-788 | ||
Improvement of the Mobility on the Step-Field for a Stair Climbable Robot with Passive Crawlers |
|
||
Junji Hirasawa |
Paper: | pp. 789-797 | ||
Hammering Acoustic Analysis Using Machine Learning Techniques for Piping Inspection |
|
||
Kou Ikeda and Akiya Kamimura |
Paper: | pp. 798-811 | ||
Effects of Gait Inducing Assist for Patients with Parkinson’s Disease on Double Support Phase During Gait |
|
||
Ai Higuchi, Junichiro Shiraishi, Yuichi Kurita, and Tomohiro Shibata |
Paper: | pp. 812-821 | ||
Novel Method for Analyzing Flexible Locomotion Patterns of Animals by Using Polar Histogram |
|
||
Keisuke Naniwa, Yasuhiro Sugimoto, Koichi Osuka, and Hitoshi Aonuma |
Paper: | pp. 822-831 | ||
Model-Based Analysis of Yo-yo Throwing Motion on Single-Link Manipulator |
|
||
Hokuto Miyakawa, Takuma Nemoto, and Masami Iwase |
Development Report: | pp. 832-839 | ||
Free-Flow Tunnel Inspection Support Devices Aiming at Labor Saving of Visual Checking |
|
||
Kazunori Hosotani and Hirofumi Yamamoto |
No.3
(Jun)
Special Issue on Innovative Robotics and Mechatronics Technology of Modern Passenger Cars for Zeroing Traffic Accidents
Special Issue on Activity of Research Center – Hiroshima University: KOBELCO Construction Machinery Dream-Driven Co-Creation Research Center
Special Issue on Innovative Robotics and Mechatronics Technology of Modern Passenger Cars for Zeroing Traffic Accidents
Editorial: | p. 483 | |
Innovative Robotics and Mechatronics Technology of Modern Passenger Cars for Zeroing Traffic Accidents |
| |
Hidehisa Yoshida and Pongsathorn Raksincharoensak | ||
The Science Council of Japan’s 2008 Report, “Aiming for a Zero Traffic Accidents Society,” states that “it is necessary to establish various driver assistance technologies based on the fact that most drivers make mistakes”; “for advanced driver assistance system (ADAS) technologies, cooperation between human operation and machine assistance, and social acceptability need to be evaluated”; and “new driver assistance by introduction of robotics technology and application of automated driving in specific operating domain should be considered in the near future.” A wide array of robotic technologies is expected to contribute to developing intelligent and advanced technologies for passenger and transport vehicles, as well as creating a rich future for the transportation of people and logistics. Over the past decade, researchers and engineers have attempted to achieve these goals. In 2015, the government announced a policy to make practical use and deployment of automated driving technologies by the year of Tokyo Olympics and Paralympics. Now, looking toward the Tokyo Olympics and Paralympics, we organized a special issue of the JRM: “Innovative Robotics and Mechatronics Technology of Modern Passenger Cars for Zeroing Traffic Accidents.” This special issue features 16 papers carefully written and reviewed by field specialists. We express our heartfelt appreciation to the authors and reviewers who have contributed their expertise to this issue. We would also like to thank the members of the Journal of Robotics and Mechatronics board for giving us the unique opportunity to coordinate this issue. |
Review: | pp. 484-493 | ||
Evolution and Evaluation of Safety Offered by Active Safety, ADAS, and AD Systems |
|
||
Masao Nagai and Hidehisa Yoshida |
Paper: | pp. 494-502 | ||
Stereo Vision by Combination of Machine-Learning Techniques for Pedestrian Detection at Intersections Utilizing Surround-View Cameras |
|
||
Tokihiko Akita, Yuji Yamauchi, and Hironobu Fujiyoshi |
Paper: | pp. 503-519 | ||
Personalized Subjective Driving Risk: Analysis and Prediction |
|
||
Naren Bao, Alexander Carballo, Chiyomi Miyajima, Eijiro Takeuchi, and Kazuya Takeda |
Paper: | pp. 520-529 | ||
HMI Design when Using Level 2 Automated Driving Function - Effects of System Status Presentation Considering the Risk of Malfunction on Driver Behavior – |
|
||
Keisuke Suzuki, Joohyeong Lee, and Atsushi Kanbe |
Paper: | pp. 530-536 | ||
Safety Compensation for Improving Driver Takeover Performance in Conditionally Automated Driving |
|
||
Hua Yao, Suyang An, Huiping Zhou, and Makoto Itoh |
Paper: | pp. 537-547 | ||
Moving Horizon Estimation with Probabilistic Data Association for Object Tracking Considering System Noise Constraint |
|
||
Tomoya Kikuchi, Kenichiro Nonaka, and Kazuma Sekiguchi |
Paper: | pp. 548-560 | ||
Fast Euclidean Cluster Extraction Using GPUs |
|
||
Anh Nguyen, Abraham Monrroy Cano, Masato Edahiro, and Shinpei Kato |
Paper: | pp. 561-570 | ||
Automated Steering Control System for Reverse Parking Maneuver of Semi-Trailer Vehicles Considering Motion Planning by Simulation of Feedback Control System |
|
||
Yutaka Hamaguchi and Pongsathorn Raksincharoensak |
Paper: | pp. 571-579 | ||
Tracking Control of a Micro Ground Vehicle Using the Course Coordinate |
|
||
Masanori Harada and Yuki Ueyama |
Paper: | pp. 580-587 | ||
Autonomous Motion Planning in Pedestrian Space Considering Passenger Comfort |
|
||
Hiroshi Yoshitake, Kenta Nishi, and Motoki Shino |
Paper: | pp. 588-597 | ||
Path Planning Design for Boarding-Type Personal Mobility Unit Passing Pedestrians Based on Pedestrian Behavior |
|
||
Hidehisa Yoshida, Kohei Yoshida, and Toyoyuki Honjo |
Paper: | pp. 598-604 | ||
Safety Evaluation of Green Light Optimal Speed Advisory (GLOSA) System in Real-World Signalized Intersection |
|
||
Hironori Suzuki and Yoshitaka Marumo |
Paper: | pp. 605-612 | ||
Effects of Demographic Characteristics on Trust in Driving Automation |
|
||
Jieun Lee, Genya Abe, Kenji Sato, and Makoto Itoh |
Development Report: | pp. 613-623 | ||
Lane-Marker-Based Map Construction and Map Precision Evaluation Methods Using On-Board Cameras for Autonomous Driving |
|
||
Kenta Maeda, Junya Takahashi, and Pongsathorn Raksincharoensak |
Development Report: | pp. 624-633 | ||
Mono-Camera-Based Robust Self-Localization Using LIDAR Intensity Map |
|
||
Kei Sato, Keisuke Yoneda, Ryo Yanase, and Naoki Suganuma |
Letter: | pp. 634-637 | ||
ACDR: Autonomous-Car Drive Recorder |
|
||
Zhi Wang, Daishi Watabe, Hideyasu Sai, Yukimichi Saito, and Masayoshi Wada |
Special Issue on Activity of Research Center – Hiroshima University: KOBELCO Construction Machinery Dream-Driven Co-Creation Research Center
Institute Overview: | pp. 640-642 | ||
Hiroshima University: KOBELCO Construction Machinery Dream-Driven Co-Creation Research Center |
|
||
Toru Yamamoto and Kiyokazu Tanaka |
Paper: | pp. 643-651 | ||
Application of a MIMO-PID Controller for a Hydraulic Excavator Considering the Velocity of CoM |
|
||
Masatoshi Kozui, Toru Yamamoto, Masaki Akiyama, Kazushige Koiwai, and Yoichiro Yamazaki |
Paper: | pp. 652-661 | ||
Design of a Database-Driven Kansei Feedback Control System Using a Hydraulic Excavators Simulator |
|
||
Takuya Kinoshita, Hiroaki Ikeda, Toru Yamamoto, Maro G. Machizawa, Kiyokazu Tanaka, and Yoichiro Yamazaki |
Development Report: | pp. 662-671 | ||
Design and Practice of a Model-Based Development Education in Hydraulic Systems |
|
||
Mikiya Sako, Shin Wakitani, Masatoshi Kozui, Toru Yamamoto, Koji Yamashita, Kazushige Koiwai, and Yoichiro Yamazaki |
Regular Papers
Paper: | pp. 673-682 | ||
Development of a Rehabilitation and Training Device Considering the Ankle Degree of Freedom |
|
||
Asaki Akagi, Satoki Tsuichihara, Shinichi Kosugi, and Hiroshi Takemura |
Paper: | pp. 683-691 | ||
Long Range Six Degree-of-Freedom Magnetic Levitation Using Low Cost Sensing and Control |
|
||
Peter Berkelman and Yu-Sheng Lu |
Paper: | pp. 692-700 | ||
Development of a Gripper with Variable Stiffness for a CT-Guided Needle Insertion Robot |
|
||
Kento Yokouchi, Tetsushi Kamegawa, Takayuki Matsuno, Takao Hiraki, Takuya Yamaguchi, and Akio Gofuku |
No.2
(Apr)
Special Issue on MEMS for Robotics and Mechatronics
Special Issue on MEMS for Robotics and Mechatronics
Editorial: | pp. 279-280 | |
MEMS for Robotics and Mechatronics |
| |
Masayoshi Esashi, Shuji Tanaka, Seiji Aoyagi, Takashi Mineta, Koichi Suzumori, Tetsuji Dohi, and Norihisa Miki | ||
MEMS (Micro Electro Mechanical Systems) is a technology that is used to incorporate sensors, actuators, microstructures, and circuits on chips by using a combination of various technologies with semiconductor process. MEMS are also used in robotics and mechatronics since they can provide compact, low-cost functional components that play crucial roles in their respective systems. We would like to elaborate on the history of MEMS technology, whose initial development started around 1970. In 1960s, Dr. Isemi Igarashi of Toyota Central R&D Labs., Inc. in Japan developed a semiconductor pressure sensor of piezo-resistance type. In 1980s, the pressure sensors were used to control automobile engines to clear exhaust gas regulations and thus contributed to solving environmental issues. In 1990s, semiconductor acceleration sensors were used for passive safety technologies to detect collision of automobiles and activate air bags, which resulted in decrease in traffic fatalities. In 2000s, an active safety system with gyro sensors was developed to detect and control spinning of a vehicle. In future, space recognition sensors with optical scanners to measure light propagation time and detect distance to an object will be used for autonomous driving. For smartphones, a microphone, an acceleration sensor, and a gyro sensor are used in user interface, and a film bulk acoustic wave resonator (FBAR) is used in a wireless communication filter. For projectors, the built-in circuit of a mirror array system is used to move mirrors placed in an array. After the development of projectors, films have not been used in movie theaters. MEMS are also widely used in medical and biological fields, such as blood pressure measurement. Esashi began research on a semiconductor ion sensor ISFET (ion sensitive field effect transistor) in 1971. ISFET detects ion concentration in electrolyte by exposing the insulating film of an insulated gate transistor to the liquid. He set up a prototyping facility when he was a graduate student and wrote only one paper on this research, although the prototyping facility was used afterwards. The ion ...<more> |
Review: | pp. 281-288 | ||
Application of Micro-Electro-Mechanical Systems (MEMS) as Sensors: A Review |
|
||
Ahmad Athif Mohd Faudzi, Yaser Sabzehmeidani, and Koichi Suzumori |
Paper: | pp. 289-296 | ||
PDMS Soft Skin Device with Deformable Micro-Diaphragm Array Fabricated with Rapid Substrate-Releasing Process |
|
||
Hideyuki Mitsui, Hiroshi Kashiwazaki, and Takashi Mineta |
Paper: | pp. 297-304 | ||
Tactile Sensor with High-Density Microcantilever and Multiple PDMS Bumps for Contact Detection |
|
||
Tomoya Fujihashi, Fumitoshi Suga, Ryoma Araki, Jyun Kido, Takashi Abe, and Masayuki Sohgawa |
Paper: | pp. 305-314 | ||
A MEMS Tactile Sensor with Fingerprint-Like Array of Contactors for High Resolution Visualization of Surface Distribution of Tactile Information |
|
||
Kazuki Watatani, Kyohei Terao, Fusao Shimokawa, and Hidekuni Takao |
Paper: | pp. 315-322 | ||
Development of MEMS Tactile Sensation Device for Haptic Robot |
|
||
Junji Sone, Yasuyoshi Matsumoto, Yoji Yasuda, Shoichi Hasegawa, and Katsumi Yamada |
Paper: | pp. 323-332 | ||
Development of a Real-Time Force and Temperature Sensing System with MEMS-LSI Integrated Tactile Sensors for Next-Generation Robots |
|
||
Masanori Muroyama, Hideki Hirano, Chenzhong Shao, and Shuji Tanaka |
Paper: | pp. 333-343 | ||
Fabrication, Experiment, and Simulation of a Flexible Microvalve-Integrated Microarm for Microgrippers Using Electrorheological Fluid |
|
||
Joon-Wan Kim, Kazuhiro Yoshida, Toru Ide, and Shinichi Yokota |
Paper: | pp. 344-350 | ||
High-Speed and Large-Amplitude Resonant Varifocal Mirror |
|
||
Takashi Sasaki, Takuro Kamada, and Kazuhiro Hane |
Paper: | pp. 351-361 | ||
Development of Artificial Skin Using Keratin Film for Evaluation of Puncture Performance of Microneedle |
|
||
Ryo Nishino, Seiji Aoyagi, Masato Suzuki, Atsushi Ueda, Yuki Okumura, Tomokazu Takahashi, Ryota Hosomi, Kenji Fukunaga, Daisuke Uta, Tomonori Takazawa, and Toshihiro Fujii |
Paper: | pp. 362-370 | ||
Effect of Inner Diameter and Anticoagulation Coating in a Microneedle on its Blood Suction Performance |
|
||
Seiji Aoyagi, Ryosuke Nomura, Tomokazu Takahashi, and Masato Suzuki |
Paper: | pp. 371-381 | ||
Effect of Microneedle Cross-Sectional Shape on Puncture Resistance – Investigation of Polygonal and Star-Shaped Cross Sections – |
|
||
Seiji Aoyagi, Kento Okuda, Tomokazu Takahashi, and Masato Suzuki |
Paper: | pp. 382-389 | ||
Development of Microneedle Puncture Device that Prevents Buckling of Needle by Delivery Operation |
|
||
Masato Suzuki, Fuuta Motooka, Tomokazu Takahashi, and Seiji Aoyagi |
Paper: | pp. 390-400 | ||
Fabrication of Microneedle from Stretched Biodegradable Polymer Sheet by 3D Laser Machining |
|
||
Seiji Aoyagi, Junya Sato, Tomokazu Takahashi, Masato Suzuki, and Shinichi Matsumoto |
Paper: | pp. 401-407 | ||
Fabrication and Characterization of a Biodegradable Hollow Microneedle from Chitosan |
|
||
Masato Suzuki, Tomokazu Takahashi, and Seiji Aoyagi |
Regular Papers
Paper: | pp. 409-421 | ||
Generating a Visual Map of the Crane Workspace Using Top-View Cameras for Assisting Operation |
|
||
Yu Wang, Hiromasa Suzuki, Yutaka Ohtake, Takayuki Kosaka, and Shinji Noguchi |
Paper: | pp. 422-436 | ||
Network Connectivity Control of Mobile Robots by Fast Position Estimations and Laplacian Kernel |
|
||
Yusuke Ikemoto, Kenichiro Nishimura, Yuichiro Mizutama, Tohru Sasaki, and Mitsuru Jindai |
Paper: | pp. 437-444 | ||
Cutting Point Detection Using a Robot with Point Clouds for Tomato Harvesting |
|
||
Takeshi Yoshida, Takanori Fukao, and Takaomi Hasegawa |
Paper: | pp. 445-458 | ||
Human Mimetic Forearm and Hand Design with a Radioulnar Joint and Flexible Machined Spring Finger for Human Skillful Motions |
|
||
Kento Kawaharazuka, Shogo Makino, Masaya Kawamura, Shinsuke Nakashima, Yuki Asano, Kei Okada, and Masayuki Inaba |
Development Report: | pp. 459-468 | ||
System Integration for Component-Based Manzai Robots with Improved Scalability |
|
||
Tomohiro Umetani, Satoshi Aoki, Tatsuya Kitamura, and Akiyo Nadamoto |
No.1
(Feb)
Congratulations! JRM Best Paper Award 2019
Special Issue on Human-Robot Interaction in Close Distance
Special Issue on Wearable Robotics and Mechatronics Technology
Special Issue on Activity of Research Center – Tokyo Metropolitan University: Community-centric System Research Center
Congratulations! JRM Best Paper Award 2019
Award: | pp. 1-2 | |
Congratulations! Journal of Robotics and Mechatronics Best Paper Award 2019 |
| |
Editorial Office |
Special Issue on Human-Robot Interaction in Close Distance
Editorial: | p. 7 | |
Human-Robot Interaction in Close Distance |
| |
Masahiro Shiomi, Hidenobu Sumioka, and Hiroshi Ishiguro | ||
As social robot research is advancing, the interaction distance between people and robots is decreasing. Indeed, although we were once required to maintain a certain physical distance from traditional industrial robots for safety, we can now interact with social robots in such a close distance that we can touch them. The physical existence of social robots will be essential to realize natural and acceptable interactions with people in daily environments. Because social robots function in our daily environments, we must design scenarios where robots interact closely with humans by considering various viewpoints. Interactions that involve touching robots influence the changes in the behavior of a person strongly. Therefore, robotics researchers and developers need to design such scenarios carefully. Based on these considerations, this special issue focuses on close human-robot interactions. This special issue on “Human-Robot Interaction in Close Distance” includes a review paper and 11 other interesting papers covering various topics such as social touch interactions, non-verbal behavior design for touch interactions, child-robot interactions including physical contact, conversations with physical interactions, motion copying systems, and mobile human-robot interactions. We thank all the authors and reviewers of the papers and hope this special issue will help readers better understand human-robot interaction in close distance. |
Paper: | pp. 8-20 | ||
Walking Hand-in-Hand Helps Relationship Building Between Child and Robot |
|
||
Chie Hieida, Kasumi Abe, Takayuki Nagai, and Takashi Omori |
Paper: | pp. 21-31 | ||
Estimating Children’s Personalities Through Their Interaction Activities with a Tele-Operated Robot |
|
||
Kasumi Abe, Takayuki Nagai, Chie Hieida, Takashi Omori, and Masahiro Shiomi |
Paper: | pp. 32-42 | ||
Anxiety Reduction Through Close Communication with Robotic Media in Dementia Patients and Healthy Older Adults |
|
||
Ryuji Yamazaki, Hiroko Kase, Shuichi Nishio, and Hiroshi Ishiguro |
Paper: | pp. 43-50 | ||
Effects of Robot’s Awareness and its Subtle Reactions Toward People’s Perceived Feelings in Touch Interaction |
|
||
Masahiro Shiomi, Takashi Minato, and Hiroshi Ishiguro |
Paper: | pp. 51-58 | ||
How Can Robots Make People Feel Intimacy Through Touch? |
|
||
Xiqian Zheng, Masahiro Shiomi, Takashi Minato, and Hiroshi Ishiguro |
Paper: | pp. 59-67 | ||
Autonomous Mobile Robot Moving Through Static Crowd: Arm with One-DoF and Hand with Involute Shape to Maneuver Human Position |
|
||
Noriaki Imaoka, Kazuma Kitazawa, Mitsuhiro Kamezaki, Shigeki Sugano, and Takeshi Ando |
Paper: | pp. 68-75 | ||
Gaze-Height and Speech-Timing Effects on Feeling Robot-Initiated Touches |
|
||
Masahiro Shiomi, Takahiro Hirano, Mitsuhiko Kimoto, Takamasa Iio, and Katsunori Shimohara |
Paper: | pp. 76-85 | ||
Multi-Modal Interaction Through Anthropomorphically Designed Communication Medium to Enhance the Self-Disclosures of Personal Information |
|
||
Nobuhiro Jinnai, Hidenobu Sumioka, Takashi Minato, and Hiroshi Ishiguro |
Paper: | pp. 86-96 | ||
Effect of Robot’s Play-Biting in Non-Verbal Communication |
|
||
Kayako Nakagawa, Reo Matsumura, and Masahiro Shiomi |
Paper: | pp. 97-112 | ||
Previous Announcement Method Using 3D CG Face Interface for Mobile Robot |
|
||
Masahiko Mikawa, Jiayi Lyu, Makoto Fujisawa, Wasuke Hiiragi, and Toyoyuki Ishibashi |
Paper: | pp. 113-127 | ||
Selection of Required Controller for Position- and Force-Based Task in Motion Copying System |
|
||
Toshiaki Okano, Roberto Oboe, Kouhei Ohnishi, and Toshiyuki Murakami |
Review: | pp. 128-135 | ||
Survey of Social Touch Interaction Between Humans and Robots |
|
||
Masahiro Shiomi, Hidenobu Sumioka, and Hiroshi Ishiguro |
Special Issue on Wearable Robotics and Mechatronics Technology
Editorial: | p. 137 | |
Wearable Robotics and Mechatronics Technology |
| |
Takayuki Tanaka, Yuichi Kurita, Keisuke Shima, and Norihisa Miki | ||
Many wearable devices have been developed and are being currently used, owing to the miniaturization of computers and electronic devices and advancements in calculation processing algorithms. They have various uses and forms, for example, a power assist robot for reducing the burden of work, a wearable sensor for measuring the level of activity and health condition of people and animals, and so on. In Japan, wearable devices have attracted attention as an important technology in a human-centered society (Society 5.0) and can help realize economic development and address social problems. A society that can benefit from a wide range of wearable devices is being realized. This special issue covers robotics and mechatronics technologies for next generation wearable devices to realize such a society, including wearable systems and their elemental technology, AI, IoT, and other relative technologies. We sincerely thank the authors for their fine contributions and the reviewers for their generous time and effort. We would also like to thank the Editorial Board of the Journal of Robotics and Mechatronics for their help with this special issue. |
Paper: | pp. 138-148 | ||
TasKi: Overhead Work Assistance Device with Passive Gravity Compensation Mechanism |
|
||
Yasuyuki Yamada, Hirokazu Arakawa, Taro Watanabe, Shunya Fukuyama, Rie Nishihama, Isao Kikutani, and Taro Nakamura |
Paper: | pp. 149-156 | ||
A Water-Hydraulic Upper-Limb Assistive Exoskeleton System with Displacement Estimation |
|
||
Takahiro Kosaki and Shigang Li |
Paper: | pp. 157-172 | ||
Development and Evaluation of a Close-Fitting Assistive Suit for Back and Arm Muscle – e.z.UP®– |
|
||
Yun-Ting Liao, Toshifumi Ishioka, Kazuko Mishima, Chiaki Kanda, Kenji Kodama, and Eiichiro Tanaka |
Paper: | pp. 173-182 | ||
Wearable Robot Arm with Consideration of Weight Reduction and Practicality |
|
||
Akimichi Kojima, Hirotake Yamazoe, and Joo-Ho Lee |
Paper: | pp. 183-198 | ||
Motion-Assist Arm with a Passive Joint for an Upper Limb |
|
||
Hiroaki Kozuka, Daisaku Uchijima, and Hiroshi Tachiya |
Paper: | pp. 199-208 | ||
Development of Two-Sensation Feedback Device for Myoelectric Prosthetic Hand Users – Compensation of Effect of Temperature Change on Haptic Feedback – |
|
||
Makuru Isobe and Chiharu Ishii |
Paper: | pp. 209-219 | ||
Development of Assist Suit for Squat Lifting Support Considering Gait and Quantitative Evaluation by Three-Dimensional Motion Analysis |
|
||
Masashi Kashima, Hirokazu Arakawa, Seigo Kimura, Rie Nishihama, Kazuya Yokoyama, Isao Kikutani, and Taro Nakamura |
Special Issue on Activity of Research Center – Tokyo Metropolitan University: Community-centric System Research Center
Institute Overview: | pp. 222-223 | ||
Tokyo Metropolitan University: Community-centric System Research Center |
|
||
Toru Yamaguchi and Eri Sato-Shimokawara |
Paper: | pp. 224-235 | ||
Investigation of Robot Expression Style in Human-Robot Interaction |
|
||
Wei-Fen Hsieh, Eri Sato-Shimokawara, and Toru Yamaguchi |
Paper: | pp. 236-243 | ||
Interactive Information Support by Robot Partners Based on Informationally Structured Space |
|
||
Shion Yamamoto, Jinseok Woo, Wei Hong Chin, Keiichi Matsumura, and Naoyuki Kubota |
Regular Papers
Paper: | pp. 245-253 | ||
Semi-Automatic Dataset Generation for Object Detection and Recognition and its Evaluation on Domestic Service Robots |
|
||
Yutaro Ishida and Hakaru Tamukoh |
Paper: | pp. 254-263 | ||
Mobile Robot Utilizing Arm Rotations – Performance of Mobile Robot Under a Gravity Environment – |
|
||
Ryota Hayashi, Yasuyuki Setoyama, Tetsuya Kinugasa, and Koji Yoshida |
Vol.31 (2019)
No.6
(Dec)
Special Issue on Infrastructure Maintenance and Inspection Robotics
Special Issue on Infrastructure Maintenance and Inspection Robotics
Editorial: | p. 743 | |
Infrastructure Maintenance and Inspection Robotics |
| |
Koichi Osuka and Shin’ichi Yuta | ||
It is a well-known fact that Japan saw an annual average economic growth rate of over 10% from around 1955 to around 1973, its so-called “high-economic-growth period.” Japan’s rate was two to four times higher than that of Europe or the United States. During this period, Japan’s infrastructure (roads, bridges, tunnels, etc.) was rapidly developed nationwide, bringing Japan’s national average road pavement ratio in 2017 to over 80%, one of the highest rates in the world. Such rapid infrastructure development has made all of Japan a comfortable place to live. However, as Japan’s infrastructure is now becoming increasingly deteriorated, the structures nationwide must be inspected for soundness and should be repaired or rebuilt if any defects are found. As these structures are highly developed, the number of structures to be inspected becomes so numerous that the human-based inspection cannot keep up. This situation has led to growing calls for artifact inspection systems that carry out inspection work more efficiently, and the Cross-ministerial Strategic Innovation Promotion Program (SIP) was established, one of which is “Infrastructure Maintenance, Renovation and Management,” with Yozo Fujino as Program Director (SIP Infrastructure), having been implemented for five years since fiscal year 2014. This Special Issue on Infrastructure Maintenance and Inspection Robotics has collected papers that propose a broad range of infrastructure maintenance/renovation/management technologies, especially those developed by SIP Infrastructure, in order to contribute to the further development of the field of infrastructure maintenance and inspection technologies. |
Review: | pp. 744-751 | ||
Research and Development on Robotic Technologies for Infrastructure Maintenance |
|
||
Keiji Nagatani and Yozo Fujino |
Paper: | pp. 752-761 | ||
Shape Adaptation of the Inspection Guide Frame in Tunnels to Avoid Obstacles Detected by a Laser Range Finder |
|
||
Fumihiro Inoue, Soonsu Kwon, Satoru Nakamura, and Yoshitaka Yanagihara |
Paper: | pp. 762-771 | ||
Inspection Test of a Tunnel with an Inspection Vehicle for Tunnel Lining Concrete |
|
||
Satoru Nakamura, Atsushi Yamashita, Fumihiro Inoue, Daisuke Inoue, Yusuke Takahashi, Nobukazu Kamimura, and Takao Ueno |
Paper: | pp. 772-780 | ||
Shadow-Based Operation Assistant for a Pipeline-Inspection Robot Using a Variance Value of the Image Histogram |
|
||
Atsushi Kakogawa, Yuki Komurasaki, and Shugen Ma |
Paper: | pp. 781-793 | ||
Development of a Peristaltic-Movement Duct-Cleaning Robot for Application to Actual Environment - Examination of Brush Type and Installation Method to Improve Cleaning Efficiency – |
|
||
Fumio Ito, Takahiko Kawaguchi, Yasuyuki Yamada, and Taro Nakamura |
Paper: | pp. 794-802 | ||
Verification and Evaluation of Robotic Inspection of the Inside of Culvert Pipes |
|
||
Hiroyasu Miura, Ayaka Watanabe, Masayuki Okugawa, and Takahiko Miura |
Paper: | pp. 803-815 | ||
Development of Lifting System for High-Elevation Inspection Robot Targeting Hanger Ropes |
|
||
Yoshinori Fujihira, Naohiko Hanajima, Kentarou Kurashige, Hidekazu Kajiwara, and Masato Mizukami |
Paper: | pp. 816-826 | ||
Development of Concrete Inspection Robot with Dual Stage Suckers |
|
||
Yuta Matsumoto, Isao Kurashige, and Kan Yoneda |
Paper: | pp. 827-836 | ||
Reliable Activation of an EPM-Based Clinging Device for Aerial Inspection Robots |
|
||
Arata Masuda, Akihiro Tanaka, Yoshiyuki Higashi, and Nanako Miura |
Paper: | pp. 837-844 | ||
Development of a Bridge Inspection Support Robot System Using Two-Wheeled Multicopters |
|
||
Manabu Nakao, Eiji Hasegawa, Taku Kudo, and Naoyuki Sawasaki |
Paper: | pp. 845-854 | ||
Autonomous Adaptive Flight Control of a UAV for Practical Bridge Inspection Using Multiple-Camera Image Coupling Method |
|
||
Kenta Hidaka, Daiki Fujimoto, and Kazuya Sato |
Development Report: | pp. 855-862 | ||
Development of Hanger-Rope Inspection Robot for Suspension Bridges |
|
||
Hidekazu Kajiwara, Naohiko Hanajima, Kentarou Kurashige, and Yoshinori Fujihira |
Development Report: | pp. 863-870 | ||
Visualization of Voids Between Tile and Concrete by Multi-Layered Scanning Method with Electromagnetic Waves |
|
||
Takumi Honda, Takayuki Tanaka, Satoru Doi, Shigeru Uchida, and Maria Q. Feng |
Regular Papers
Paper: | pp. 871-881 | ||
Analysis of Fast Bipedal Walking Using Mechanism of Actively Controlled Wobbling Mass |
|
||
Yuta Hanazawa, Terumitsu Hayashi, Masaki Yamakita, and Fumihiko Asano |
Paper: | pp. 882-893 | ||
Development of a Spray-Coated Tactile Sensor – Prototype and Modeling of 2D Sensor on Cylindrical Surface – |
|
||
Kouki Sato, Luis Canete, and Takayuki Takahashi |
Paper: | pp. 894-904 | ||
Three-DoF Flapping-Wing Robot with Variable-Amplitude Link Mechanism |
|
||
Terukazu Sato, Akihiro Fujimura, and Naoyuki Takesue |
Paper: | pp. 905-912 | ||
Statistical Exploration of Distributed Pattern Formation Based on Minimalistic Approach |
|
||
Yuichiro Sueoka, Takamasa Tahara, Masato Ishikawa, and Koichi Osuka |
Paper: | pp. 913-925 | ||
Development of Rover with ARLISS Requirements and the Examination of the Rate of Acceleration that Causes Damages During a Rocket Launch |
|
||
Takuya Saito and Miho Akiyama |
Paper: | pp. 926-933 | ||
Development of Birefringence Confocal Laser Scanning Microscope and its Application to Sample Measurements |
|
||
Shinya Ohkubo |
No.5
(Oct)
Regular papers
Regular Papers
Paper: | pp. 647-656 | ||
Step Response Characteristics of Anisotropic Gel Actuator Hybridized with Nanosheet Liquid Crystal |
|
||
Hitoshi Kino, Akihiro Kiyota, Takumi Inadomi, Tomonori Kato, Hiroyuki Fujioka, and Nobuyoshi Miyamoto |
Paper: | pp. 657-670 | ||
Three-Dimensional Aerial Image Interface, 3DAII |
|
||
Takafumi Matsumaru, Asyifa Imanda Septiana, and Kazuki Horiuchi |
Paper: | pp. 671-685 | ||
A Tandem Marker-Based Motion Capture Method for Dynamic Small Displacement Distribution Analysis |
|
||
Zulhaj Aliansyah, Kohei Shimasaki, Mingjun Jiang, Takeshi Takaki, Idaku Ishii, Hua Yang, Chikako Umemoto, and Hiroshi Matsuda |
Paper: | pp. 686-696 | ||
Effect of Trunk Swinging Behaviors on Planar Bipedal Walking with an Upper Body on Gentle Slope |
|
||
Toyoyuki Honjo and Hidehisa Yoshida |
Paper: | pp. 697-706 | ||
Gravity Compensation Modular Robot: Proposal and Prototyping |
|
||
Yukio Morooka and Ikuo Mizuuchi |
Development Report: | pp. 707-714 | ||
Development of the Servo Valve with High Durability Using Split-Type Sleeve – Reduction of Wear with Ceramic Material – |
|
||
Koki Sakakibara, Shunya Suzuki, Kazushi Shibata, Yuto Sawada, Satoshi Ashizawa, and Takeo Oomichi |
Letter: | pp. 715-718 | ||
Development of Respiration Measuring Robot |
|
||
Junji Satake, Tsukasa Ushijima, and Yusuke Kudo |
News: | pp. 720-722 | ||
Zombification of Insects as a Model for Searching the Source of Various Behaviors of Living Organisms |
|
||
Koichi Osuka |
News: | pp. 723-726 | ||
Centipede Type Robot i-CentiPot: From Machine to Creatures |
|
||
Koichi Osuka, Tetsuya Kinugasa, Ryota Hayashi, Koji Yoshida, Dai Owaki, and Akio Ishiguro |
No.4
(Aug)
Special Issue on Machine Learning for Robotics and Swarm Systems
Special Issue on Machine Learning for Robotics and Swarm Systems
Editorial: | p. 519 | |
Machine Learning for Robotics and Swarm Systems |
| |
Masahito Yamamoto, Takashi Kawakami, and Keitaro Naruse | ||
In recent years, machine-learning applications have been rapidly expanding in the fields of robotics and swarm systems, including multi-agent systems. Swarm systems were developed in the field of robotics as a kind of distributed autonomous robotic systems, imbibing the concepts of the emergent methodology for extremely redundant systems. They typically consist of homogeneous autonomous robots, which resemble living animals that build swarms. Machine-learning techniques such as deep learning have played a remarkable role in controlling robotic behaviors in the real world or multi-agents in the simulation environment. In this special issue, we highlight five interesting papers that cover topics ranging from the analysis of the relationship between the congestion among autonomous robots and the task performances, to the decision making process among multiple autonomous agents. We thank the authors and reviewers of the papers and hope that this special issue encourages readers to explore recent topics and future studies in machine-learning applications for robotics and swarm systems. |
Paper: | pp. 520-525 | ||
Sharing Experience for Behavior Generation of Real Swarm Robot Systems Using Deep Reinforcement Learning |
|
||
Toshiyuki Yasuda and Kazuhiro Ohkura |
Paper: | pp. 526-534 | ||
Effects of Congestion on Swarm Performance and Autonomous Specialization in Robotic Swarms |
|
||
Motoaki Hiraga and Kazuhiro Ohkura |
Paper: | pp. 535-545 | ||
Dynamic Partitioning Strategies for Multi-Robot Patrolling Systems |
|
||
Satoshi Hoshino and Kazuki Takahashi |
Paper: | pp. 546-557 | ||
Centralized Business-to-Business Networks in the Japanese Textile and Apparel Industry: Using Network Analysis and an Agent-Based Model |
|
||
Yusaku Ogai, Yoshiyuki Matsumura, Yusuke Hoshino, Toshiyuki Yasuda, and Kazuhiro Ohkura |
Paper: | pp. 558-565 | ||
Agreement Algorithm Based on a Trial and Error Method for the Best of Proportions Problem |
|
||
Nhuhai Phung, Masao Kubo, and Hiroshi Sato |
Regular Papers
Paper: | pp. 567-582 | ||
Omnidirectional Mobility Following Through Trochoidal Trajectory |
|
||
Taro Maeda and Hideyuki Ando |
Paper: | pp. 583-593 | ||
Experiment Verification and Stability Analysis of Iterative Learning Control for Shape Memory Alloy Wire |
|
||
Hitoshi Kino, Naofumi Mori, Shota Moribe, Kazuyuki Tsuda, and Kenji Tahara |
Paper: | pp. 594-602 | ||
Development of the Biological Information Measurement System for STEM Education and High School/University Articulation |
|
||
Takeshi Shimoto, Chika Miyamoto, and Takatoshi Umeno |
Paper: | pp. 603-611 | ||
Underwater Structure from Motion for Cameras Under Refractive Surfaces |
|
||
Xiaorui Qiao, Atsushi Yamashita, and Hajime Asama |
Paper: | pp. 612-620 | ||
Set-Point Control of a Musculoskeletal System Under Gravity by a Combination of Feed-Forward and Feedback Manners Considering Output Limitation of Muscular Forces |
|
||
Yuki Matsutani, Kenji Tahara, and Hitoshi Kino |
Paper: | pp. 621-628 | ||
High-Frequency Vibration of Leg Masses for Improving Gait Stability of Compass Walking on Slippery Downhill |
|
||
Longchuan Li, Fumihiko Asano, and Isao Tokuda |
Paper: | pp. 629-638 | ||
Mood Perception Model for Social Robot Based on Facial and Bodily Expression Using a Hidden Markov Model |
|
||
Jiraphan Inthiam, Abbe Mowshowitz, and Eiji Hayashi |
No.3
(Jun)
Review on Introduction to Simultaneous Localization and Mapping
Special Issue on Education Based on Practical Exercise on Sensing and Control
Review on Introduction to Simultaneous Localization and Mapping
Review: | pp. 367-374 | ||
Introduction to Simultaneous Localization and Mapping |
|
||
Takashi Tsubouchi |
Special Issue on Education Based on Practical Exercise on Sensing and Control
Editorial: | p. 375 | |
Education Based on Practical Exercise on Sensing and Control |
| |
Shoichiro Fujisawa, Kazuo Kawada, and Yoshihiro Ohnishi | ||
Control engineering and sensing engineering improve productivity and save resources and energy in industry, and they are also deeply related to the solving greater societal, economic, and environmental problems. Control engineering and sensing engineering have become dynamic forces that enrich various phases of life through interdisciplinary or cross-sectional study. Furthermore, in recent years, due to the development of information technology, as symbolized by terms such as “big data” or “AI,” “sensing and control at a higher level” has become possible, premised by big data processing that is faster by orders of magnitude than conventional data processing. All this has increased the importance of control engineering and sensing engineering. In response to the development of the fields of control engineering and sensing engineering associated with the advance of the “information society,” education in these fields has also needed to be enhanced. On the national scale, the Ministry of Education, Culture, Sports, Science and Technology will introduce Japanese elementary school computational thinking education into elementary school in fiscal year 2020, and the new Courses of Study for High School Information Education in fiscal year 2022. At the same time, individual companies, educational institutions, etc. have also been experimenting with various forms of education in control engineering and sensing engineering. During these changing times, the most advanced studies related to the development of instruction and evaluation methods for educational materials on control engineering, sensing engineering, and control technology have been collected, and the present special issue was planned. This special issue is a collection of practical papers related to measurement and control education, including one paper on Model-Based Development education in a company and eight papers on education in an educational institution. These eight papers include two on education using a robot contest in a university, one on introducing measurement and control engineering education...<more> |
Paper: | pp. 376-382 | ||
Design of an Educational Hardware in the Loop Simulator for Model-Based Development Education |
|
||
Shin Wakitani and Toru Yamamoto |
Paper: | pp. 383-390 | ||
Educational Effect of Participation in Robot Competition on Experience-Based Learning |
|
||
Yoshio Kaji, Junji Kawata, and Shoichiro Fujisawa |
Paper: | pp. 391-404 | ||
The Educational Effects of Practical Manufacturing Activities in Graduation Research |
|
||
Junji Kawata, Jiro Morimoto, Mineo Higuchi, and Shoichiro Fujisawa |
Paper: | pp. 405-411 | ||
Motivation System for Students to Learn Control Engineering and Image Processing |
|
||
Sam Ann Rahok, Hirohisa Oneda, Shigeji Osawa, and Koichi Ozaki |
Paper: | pp. 412-418 | ||
Teaching Material Imitating the Advanced Driver-Assistance System for Measurement and Control Education |
|
||
Takatoshi Umeno and Takeshi Shimoto |
Paper: | pp. 419-426 | ||
Development of Basic Training for Teaching Measurement and Control to Junior High School Students |
|
||
Teruyuki Tamai, Yoshihiro Ohnishi, and Kazuo Kawada |
Paper: | pp. 427-433 | ||
Evaluation for Task Achievement of Robotics Programming Based on Image Information |
|
||
Yoshihiro Ohnishi, Shogo Takechi, Teruyuki Tamai, Shinnosuke Mori, and Kazuo Kawada |
Paper: | pp. 434-440 | ||
Implement a Program with Contents of Measurement and Control for Elementary School Science Classes |
|
||
Shinichi Imai, Youichirou Ueno, and Kazunori Kajihara |
Paper: | pp. 441-451 | ||
A Study on Developmentally Appropriate Programming Education Learning Materials for Lower-Elementary School Students |
|
||
Kazuo Kawada, Katsuya Okamoto, Teruyuki Tamai, and Yoshihiro Ohnishi |
Regular Papers
Paper: | pp. 453-463 | ||
Hierarchical Proximity Sensor for High-Speed and Intelligent Control of Robotic Hand |
|
||
Yuji Hirai, Takuya Mizukami, Yosuke Suzuki, Tokuo Tsuji, and Tetsuyou Watanabe |
Paper: | pp. 464-473 | ||
Path Planning in Outdoor Pedestrian Settings Using 2D Digital Maps |
|
||
Ahmed Farid and Takafumi Matsumaru |
Paper: | pp. 474-492 | ||
Cardboard Box Depalletizing Robot Using Two-Surface Suction and Elastic Joint Mechanisms: Mechanism Proposal and Verification |
|
||
Junya Tanaka and Akihito Ogawa |
Paper: | pp. 493-499 | ||
Trajectory Prediction with a Conditional Variational Autoencoder |
|
||
Thibault Barbié, Takaki Nishio, and Takeshi Nishida |
Development Report: | pp. 500-506 | ||
MACROTIS: Cubic Robot with Snap-Through-Buckling Mechanisms for Achieving High Freedom of Movement |
|
||
Kwanwai Mak, Koichi Osuka, Yasuhiro Sugimoto, and Teruyo Wada |
No.2
(Apr)
Special Issue on Probabilistic Robotics and SLAM
Special Issue on Probabilistic Robotics and SLAM
Editorial: | p. 179 | |
Probabilistic Robotics and SLAM |
| |
Keigo Watanabe, Shoichi Maeyama, Tetsuo Tomizawa, Ryuichi Ueda, and Masahiro Tomono | ||
Intelligent mobile robots need self-localization, map generation, and the ability to explore unknown environments autonomously. Probabilistic processing can be applied to overcome the problems of movement uncertainties and measurement errors. Probabilistic robotics and simultaneous localization and mapping (SLAM) technologies are therefore strongly related, and they have been the focus of many studies. As more and more practical applications are found for intelligent mobile robots, such as for autonomous driving and cleaning, the applicability of these techniques has been increasing. In this special issue, we provide a wide variety of very interesting papers ranging from studies and developments in applied SLAM technologies to fundamental theories for SLAM. There are five academic papers, one each on the following topics: first visit navigation, controls for following rescue clues, indoor localization using magnetic field maps, a new solution for self-localization using downhill simplex method, and object detection for long-term map management through image-based learning. In addition, in the next number, there will be a review paper by Tsukuba University’s Prof. Tsubouchi, who is famous for the Tsukuba Challenge and research related to mobile robotics. We editors hope this special issue will help readers to develop mobile robots and use SLAM technologies and probabilistic approaches to produce successful applications. |
Paper: | pp. 180-193 | ||
Navigation Based on Metric Route Information in Places Where the Mobile Robot Visits for the First Time |
|
||
Asahi Handa, Azumi Suzuki, Hisashi Date, Ryohsuke Mitsudome, Takashi Tsubouchi, and Akihisa Ohya |
Paper: | pp. 194-202 | ||
Robust Human Tracking of a Crawler Robot |
|
||
Yasuaki Orita and Takanori Fukao |
Paper: | pp. 203-211 | ||
Indoor Self-Localization Using Multiple Magnetic Sensors |
|
||
Isaku Nagai, Jun Sakai, and Keigo Watanabe |
Paper: | pp. 212-220 | ||
Self-Localization Estimation for Mobile Robot Based on Map-Matching Using Downhill Simplex Method |
|
||
Kazuya Okawa |
Paper: | pp. 221-230 | ||
Cross-Domain Change Object Detection Using Generative Adversarial Networks |
|
||
Takuma Sugimoto, Kanji Tanaka, and Kousuke Yamaguchi |
Regular Papers
Paper: | pp. 231-239 | ||
Development of a Cross-Platform Cockpit for Simulated and Tele-Operated Excavators |
|
||
Masaru Ito, Yusuke Funahara, Seiji Saiki, Yoichiro Yamazaki, and Yuichi Kurita |
Paper: | pp. 240-250 | ||
Consideration of Multi-Degree of Freedom Vibration on Large-Sized Gantry Type Linear Motor Slider |
|
||
Tetsuya Ojiro, Toshiyuki Tachibana, Hideki Honda, Hiroshi Hamamatsu, Kazuhiro Tsuruta, and Tsuyoshi Hanamoto |
Paper: | pp. 251-262 | ||
3D Measurement of Large Structure by Multiple Cameras and a Ring Laser |
|
||
Hiroshi Higuchi, Hiromitsu Fujii, Atsushi Taniguchi, Masahiro Watanabe, Atsushi Yamashita, and Hajime Asama |
Paper: | pp. 263-273 | ||
Deformation Control of a Manipulator Based on the Zener Model |
|
||
Taku Senoo, Kenichi Murakami, and Masatoshi Ishikawa |
Paper: | pp. 274-288 | ||
A Driving Simulation Study on Visual Cue Presented in the Peripheral Visual Field for Prompting Driver’s Attention |
|
||
Hiroshi Takahashi and Makoto Itoh |
Paper: | pp. 289-304 | ||
A Three-Fingered Hand with a Suction Gripping System for Warehouse Automation |
|
||
Shun Hasegawa, Kentaro Wada, Kei Okada, and Masayuki Inaba |
Paper: | pp. 305-316 | ||
Design Method of Spring Balance Mechanism Through Derivation of General Solution |
|
||
Kazuki Kaneda, Hirokazu Yamagata, and Toshio Morita |
Paper: | pp. 317-328 | ||
Synchronous Position Control of Robotics System for Infrastructure Inspection Moving on Rope Tether |
|
||
Makpal Sarieva, Lei Yao, Kei Sugawara, and Tadashi Egami |
Paper: | pp. 329-338 | ||
Using Uncertain DM-Chameleon Clustering Algorithm Based on Machine Learning to Predict Landslide Hazards |
|
||
Jian Hu, Haiwan Zhu, Yimin Mao, Canlong Zhang, Tian Liang, and Dinghui Mao |
Paper: | pp. 339-347 | ||
Uncertain Interval Data EFCM-ID Clustering Algorithm Based on Machine Learning |
|
||
Yimin Mao, Yinping Liu, Muhammad Asim Khan, Jiawei Wang, Dinghui Mao, and Jian Hu |
Development Report: | pp. 348-354 | ||
Development of a Multi-Master Communication Platform for Mobile Distributed Systems |
|
||
Kwanwai Mak, Koichi Osuka, and Teruyo Wada |
No.1
(Feb)
Congratulations! Journal of Robotics and Mechatronics Best Paper Award 2018
Congratulations to the Elected IEEE Presidents
JRM 30th Anniversary
Special Issue on History, Trends, and Future of Practical Robotics and Mechatronics
Congratulations! Journal of Robotics and Mechatronics Best Paper Award 2018
Award: | p. 1 | |
Congratulations! Journal of Robotics and Mechatronics Best Paper Award 2018 |
| |
Editorial Office |
Congratulations to the Elected IEEE Presidents
Message: | p. 2 | |
Congratulations to the Elected IEEE Presidents |
| |
Editorial Office |
JRM 30th Anniversary
Message: | p. 5 | |
Celebrating 30 Years Anniversary of JRM Publication |
| |
Kazuo Yamafuji |
Message: | p. 6 | |
Looking Toward the Next Ten Years |
| |
Masanori Idesawa |
Message: | p. 7 | |
Celebrating the Publication of the 30th Anniversary Issue |
| |
Tatsuo Arai |
Message: | p. 8 | |
Congratulations on the 30th Anniversary of the JRM |
| |
Yoshihiro Takita |
Special Issue on History, Trends, and Future of Practical Robotics and Mechatronics
Review: | pp. 10-15 | ||
Development of SCARA Robots |
|
||
Kazuo Yamafuji |
Review: | pp. 16-26 | ||
Humanoid Robot Hand and its Applied Research |
|
||
Haruhisa Kawasaki and Tetsuya Mouri |
Review: | pp. 27-34 | ||
Development of Myoelectric Robotic/Prosthetic Hands with Cybernetic Control at the Biological Systems Engineering Laboratory, Hiroshima University |
|
||
Toshio Tsuji, Taro Shibanoki, Go Nakamura, and Akira Furui |
Review: | pp. 35-44 | ||
Research and Development of Rehabilitation Systems for the Upper Limbs “PLEMO” Series |
|
||
Junji Furusho and Naoyuki Takesue |
Review: | pp. 45-56 | ||
Dynamic Intelligent Systems Based on High-Speed Vision |
|
||
Taku Senoo, Yuji Yamakawa, Shouren Huang, Keisuke Koyama, Makoto Shimojo, Yoshihiro Watanabe, Leo Miyashita, Masahiro Hirano, Tomohiro Sueishi, and Masatoshi Ishikawa |
Review: | pp. 57-62 | ||
Recent Trends in the Research of Industrial Robots and Future Outlook |
|
||
Yukiyasu Domae |
Regular Papers
Paper: | pp. 63-69 | ||
Raw Material Composition Control Method for Cement Based on Semi-Tensor Product |
|
||
Ping Jiang, Hongliang Yu, Shi Li, and Xiaohong Wang |
Paper: | pp. 70-77 | ||
Research on Snoring Recognition Algorithms |
|
||
Yongping Dan, Yaming Song, Dongyun Wang, Fenghui Zhang, Wei Liu, and Xiaohui Lu |
Paper: | pp. 78-87 | ||
TAOYAKA-III: A Six-Legged Robot Capable of Climbing Various Columnar Objects |
|
||
Kazuyuki Ito, Ryushi Aoyagi, and Yoshihiro Homma |
Paper: | pp. 88-94 | ||
Three-States-Transition Method for Fall Detection Algorithm Using Depth Image |
|
||
Xiangbo Kong, Zelin Meng, Lin Meng, and Hiroyuki Tomiyama |
Paper: |