Paper:
Human Mimetic Forearm and Hand Design with a Radioulnar Joint and Flexible Machined Spring Finger for Human Skillful Motions
Kento Kawaharazuka, Shogo Makino, Masaya Kawamura, Shinsuke Nakashima, Yuki Asano, Kei Okada, and Masayuki Inaba
Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
Humans have characteristic forearm and hand structures, and most of the previously developed humanoids are not equipped with them. The human forearm has a radioulnar structure composed of two long thin bones, and the human hand has flexibility to move to fit the object and strength to support the human body. Therefore, we develop a novel miniature bone-muscle module integrating bone and muscle structures, and realize the human radioulnar structure. In addition, we develop a novel finger, which is flexible and robust, by using machined springs. We integrate them and construct a forearm and hand system which imitates human joint structures, muscle arrangements, proportion, and weight. Using this forearm and hand system, we realize several human skillful motions.
- [1] Y. Nakanishi, S. Ohta, T. Shirai, Y. Asano, T. Kozuki, Y. Kakehashi, H. Mizoguchi, T. Kurotobi, Y. Motegi, K. Sasabuchi, J. Urata, K. Okada, I. Mizuuchi, and M. Inaba, “Design Approach of Biologically-Inspired Musculoskeletal Humanoids,” Int. J. of Advanced Robotic Systems, Vol.10, No.4, pp. 216-228, 2013.
- [2] S. Wittmeier, C. Alessandro, N. Bascarevic, K. Dalamagkidis, D. Devereux, A. Diamond, M. Jäntsch, K. Jovanovic, R. Knight, H. G. Marques, P. Milosavljevic, B. Mitra, B. Svetozarevic, V. Potkonjak, R. Pfeifer, A. Knoll, and O. Holland, “Toward Anthropomimetic Robotics: Development, Simulation, and Control of a Musculoskeletal Torso,” Artificial Life, Vol.19, No.1, pp. 171-193, 2013.
- [3] M. Jäntsch, S. Wittmeier, K. Dalamagkidis, A. Panos, F. Volkart, and A. Knoll, “Anthrob – A Printed Anthropomimetic Robot,” Proc. of the 2013 IEEE-RAS Int. Conf. on Humanoid Robots, pp. 342-347, 2013.
- [4] Y. Asano, T. Kozuki, S. Ookubo, M. Kawamura, S. Nakashima, T. Katayama, I. Yanokura, T. Hirose, K. Kawaharazuka, S. Makino, Y. Kakiuchi, K. Okada, and M. Inaba, “Human Mimetic Musculoskeletal Humanoid Kengoro toward Real World Physically Interactive Actions,” Proc. of the 2016 IEEE-RAS Int. Conf. on Humanoid Robots, pp. 876-883, 2016.
- [5] Y. Asano, H. Mizoguchi, T. Kozuki, Y. Motegi, M. Osada, J. Urata, Y. Nakanishi, K. Okada, and M. Inaba, “Lower Thigh Design of Detailed Musculoskeletal Humanoid “Kenshiro”,” Proc. of the 2012 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 4367-4372, 2012.
- [6] I. Mizuuchi, T. Yoshikai, Y. Nakanishi, Y. Sodeyama, T. Yamamoto, A. Miyadera, T. Niemela, M. Hayashi, J. Urata, and M. Inaba, “Development of muscle-driven flexible-spine humanoids,” Proc. of the 2005 IEEE-RAS Int. Conf. on Humanoid Robots, pp. 339-344, 2005.
- [7] M. Osada, H. Mizoguchi, Y. Asano, T. Kozuki, J. Urata, Y. Nakanishi, K. Okada, and M. Inaba, “Application of “Planar Muscle” with Soft Skin-Like Outer Function Suitable for Musculoskeletal Humanoid,” J. Robot. Mechatron., Vol.24, No.6, pp. 1080-1088, 2012.
- [8] Y. Sodeyama, T. Yoshikai, T. Nishino, I. Mizuuchi, and M. Inaba, “The Designs and Motions of a Shoulder Structure with a Wide Range of Movement Using Bladebone-Collarbone Structures,” Proc. of the 2007 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 3629-3634, 2007.
- [9] H. Endo and M. Wada, “The Coupled Tendon-driven System for Musculoskeletal Elbow Joints,” J. of the Robotics Society of Japan, Vol.11, No.8, pp. 1252-1260, 1993.
- [10] S. Ikemoto, F. Kannou, and K. Hosoda, “Humanlike Shoulder Complex for Musculoskeletal Robot Arms,” Proc. of the 2012 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 4892-4897, 2012.
- [11] Y. Nakanishi, T. Izawa, M. Osada, N. Ito, S. Ohta, J. Urata, and M. Inaba, “Development of Musculoskeletal Humanoid Kenzoh with Mechanical Compliance Changeable Tendons by Nonlinear Spring Unit,” Proc. of the 2011 IEEE Int. Conf. on Robotics and Biomimetics, pp. 2384-2389, 2011.
- [12] A. Kochan, “Shadow delivers first hand,” Industrial Robot: An Int. J., Vol.32, No.1, pp. 15-16, 2005.
- [13] M. Grebenstein, A. Albu-Schäffer, T. Bahls, M. Chalon, O. Eiberger, W. Friedl, R. Gruber, S. Haddadin, U. Hagn, R. Haslinger, H. Höppner, S. Jörg, M. Nickl, A. Nothhelfer, F. Petit, J. Reill, N. Seitz, T. Wimböck, S. Wolf, T. Wüsthoff, and G. Hirzinger, “The DLR Hand Arm System,” Proc. of The 2011 IEEE Int. Conf. on Robotics and Automation, pp. 3175-3182, 2011.
- [14] A. Ke, J. Huang, and J. He, “An Underactuated Prosthetic Hand with Coupled Metacarpophalangeal Joints,” J. Adv. Comput. Intell. Intell. Inform., Vol.22, No.5, pp. 674-682, 2018.
- [15] A. H. Arieta, R. Katoh, H. Yokoi, and Y. Wenwei, “Development of a Multi-DOF Electromyography Prosthetic System Using the Adaptive Joint Mechanism,” Applied Bionics and Biomechanics, Vol.3, No.2, pp. 101-111, 2006.
- [16] T. E. Wiste, S. A. Dalley, T. J. Withrow, and M. Goldfarb, “Design of a multifunctional anthropomorphic prosthetic hand with extrinsic actuation,” Proc. of the 2009 IEEE Int. Conf. on Rehabilitation Robotics, pp. 675-681, 2009.
- [17] T. Mouri, K. Nakamura, H. Kawasaki, T. Abe, Y. Kobayashi, K. Mori, and M. Saito, “High Output Robot Hand with Retention Mechanism,” Proc. of the 2016 JSME Annual Conf. on Robotics and Mechatronics, 2016 (in Japanese).
- [18] J. Yang, E. P. Pitarch, K. Abdel-Malek, A. Patrick, and L. Lindkvist, “A multi-fingered hand prosthesis,” Mechanism and Machine Theory, Vol.39, No.6, pp. 555-581, 2004.
- [19] M. Hioki, S. Ebisawa, H. Sakaeda, T. Mouri, S. Nakagawa, Y. Uchida, and H. Kawasaki, “Design and control of electromyogram prosthetic hand with high grasping force,” Proc. of the 2011 IEEE Int. Conf. on Robotics and Biomimetics, pp. 1128-1133, 2011.
- [20] L. U. Odhner, L. P. Jentoft, M. R. Claffee, N. Corson, Y. Tenzer, R. R. Ma, M. Buehler, R. Kohout, R. D. Howe, and A. M. Dollar, “A compliant, underactuated hand for robust manipulation,” The Int. J. of Robotics Research, Vol.33, No.5, pp. 736-752, 2014.
- [21] K. Kawaharazuka, S. Makino, M. Kawamura, Y. Asano, Y. Kakiuchi, K. Okada, and M. Inaba, “Human mimetic forearm design with radioulnar joint using miniature bone-muscle modules and its applications,” Proc. of the 2017 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 4956-4962, 2017.
- [22] S. Makino, K. Kawaharazuka, M. Kawamura, Y. Asano, K. Okada, and M. Inaba, “High-power, flexible, robust hand: Development of musculoskeletal hand using machined springs and realization of self-weight supporting motion with humanoid,” Proc. of the 2017 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 1187-1192, 2017.
- [23] K. Kawaharazuka, S. Makino, K. Tsuzuki, M. Onitsuka, Y. Nagamatsu, K. Shinjo, T. Makabe, Y. Asano, K. Okada, K. Kawasaki, and M. Inaba, “Component Modularized Design of Musculoskeletal Humanoid Platform Musashi to Investigate Learning Control Systems,” Proc. of the 2019 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 7294-7301, 2019.
- [24] Y. Nakanishi, Y. Asano, T. Kozuki, H. Mizoguchi, Y. Motegi, M. Osada, T. Shirai, J. Urata, K. Okada, and M. Inaba, “Design Concept of Detail Musculoskeletal Humanoid “Kenshiro” – Toward a real human body musculoskeletal simulator,” Proc. of the 2012 IEEE-RAS Int. Conf. on Humanoid Robots, pp. 1-6, 2012.
- [25] Y. Asano, T. Kozuki, S. Ookubo, K. Kawasaki, T. Shirai, K. Kimura, K. Okada, and M. Inaba, “A Sensor-driver Integrated Muscle Module with High-tension Measurability and Flexibility for Tendon-driven Robots,” Proc. of the 2015 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 5960-5965, 2015.
- [26] J. Englsberger, A. Werner, C. Ott, B. Henze, M. A. Roa, G. Garofalo, R. Burger, A. Beyer, O. Eiberger, K. Schmid, and A. Albu-Schäffer, “Overview of the torque-controlled humanoid robot TORO,” Proc. of the 2014 IEEE-RAS Int. Conf. on Humanoid Robots, pp. 916-923, 2014.
- [27] M. T. Mason and J. K. Salisbury, “Robot Hands and the Mechanics of Manipulation,” MIT Press, 1985.
- [28] M. C. Carrozza, G. Cappiello, G. Stellin, F. Zaccone, F. Vecchi, S. Micera, and P. Dario, “A Cosmetic Prosthetic Hand with Tendon Driven Under-Actuated Mechanism and Compliant Joints: Ongoing Research and Preliminary Results,” Proc. of the 2005 IEEE Int. Conf. on Robotics and Automation, pp. 2054-2059, 2005.
- [29] J. Yang, K. Abdel-Malek, and J. Potratz, “Design and prototyping of an active hand prosthetic device,” Industrial Robot: An Int. J., Vol.32, No.1, pp. 71-78, 2005.
- [30] C. Gosselin, F. Pelletier, and T. Laliberte, “An anthropomorphic underactuated robotic hand with 15 dofs and a single actuator,” Proc. of The 2008 IEEE Int. Conf. on Robotics and Automation, pp. 749-754, 2008.
- [31] Y. Asano, K. Okada, and M. Inaba, “Design principles of a human mimetic humanoid: Humanoid platform to study human intelligence and internal body system,” Science Robotics, Vol.2, No.13, eaaq0899, 2017.
- [32] I. A. Kapandji, “Physiologie Articulaire,” 6th Edition, Vol.1, Ishiyaku Pub, Inc., 2010.
- [33] D. A. Neumann, “Kinesiology of the Musculoskeletal System: Foundations for Rehabilitation,” Mosby, 2013.
- [34] H. Hirukawa, F. Kanehiro, K. Kaneko, S. Kajita, K. Fujiwara, Y. Kawai, F. Tomita, S. Hirai, K. Tanie, T. Isozumi, K. Akachi, T. Kawasaki, S. Ota, K. Yokoyama, H. Handa, Y. Fukase, J. Maeda, Y. Nakamura, S. Tachi, and H. Inoue, “Humanoid robotics platforms developed in HRP,” Robotics and Autonomous Systems, Vol.48, No.4, pp. 165-175, 2004.
- [35] R. Terasawa, S. Noda, K. Kojima, R. Koyama, F. Sugai, S. Nozawa, Y. Kakiuchi, K. Okada, and M. Inaba, “Achievement of Dynamic Tennis Swing Motion by Offline Motion Planning and Online Trajectory Modification Based on Optimization with a Humanoid Robot,” Proc. of the 2016 IEEE-RAS Int. Conf. on Humanoid Robots, pp. 1094-1100, 2016.
- [36] S. Ohta, K. Hongo, Y. Nakanishi, I. Mizuuchi, and M. Inaba, “Improvement of Performance for Musculoskeletal Robots by Mountable Actuator Units,” J. Robot. Mechatron., Vol.22, No.3, pp. 391-401, 2010.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.