single-rb.php

JRM Vol.33 No.6 pp. 1216-1222
doi: 10.20965/jrm.2021.p1216
(2021)

Review:

Field Robotics: Applications and Fundamentals

Takanori Fukao

University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

Received:
October 4, 2021
Accepted:
October 12, 2021
Published:
December 20, 2021
Keywords:
field robotics, path planning, robust control, recognition, artificial intelligence
Abstract
Field Robotics: Applications and Fundamentals

Automated cabbage harvester

Field robotics is an area that is impelled by an application-driven approach by its nature. In this paper, I first review certain actual application areas of field robotics. Then, I discuss the current status of the application of field robotics in three common technologies: (1) mapping and path planning; (2) self-localization, recognition, and decision-making; and (3) dynamics and control. I then conclude by presenting future perspectives.

Cite this article as:
T. Fukao, “Field Robotics: Applications and Fundamentals,” J. Robot. Mechatron., Vol.33, No.6, pp. 1216-1222, 2021.
Data files:
References
  1. [1] M. Buehler, K. Iagnemma, and S. Singh (Eds.), “The DARPA Urban Challenge Autonomous Vehicles in City Traffic,” Springer, 2009.
  2. [2] E. Guizzo, “How Google’s Self-Driving Car Works,” IEEE Spectrum, 2011.
  3. [3] C. Cadena et al., “Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age,” IEEE Trans. on Robotics, Vol.32, No.6, pp. 1309-1332, 2016.
  4. [4] S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu, “A survey of deep learning techniques for autonomous driving,” J. of Field Robotics, Vol.37, Issue 3, pp. 362-386, 2019.
  5. [5] K. J. Shin and M. Shunsuke, “Consumer Demand for Fully Automated Driving Technology: Evidence from Japan,” RIETI Discussion Paper Series, 17-E-032, 2017.
  6. [6] T. Sugimachi, T. Fukao, Y. Suzuki, and H. Kawashima “Development of Autonomous Platooning System for Heavy-Duty Trucks,” IFAC Proc. Volumes, Vol.46, Issue 21, pp. 52-57, 2013.
  7. [7] Y. Orita and T. Fukao, “Robust Human Tracking of a Crawler Robot,” J. Robot. Mechatron., Vol.31, No.2, pp. 194-202, 2019.
  8. [8] H. Saiki, T. Kobayashi, T. Fukao, T. Urakubo, K. Araiba, and H. Amano, “Control for Suppressing Roll Motion of Outdoor Blimp Robots for Disaster Surveillance,” AIAA Infotech at Aerospace, AIAA 2015-0714, 2015.
  9. [9] N. Noguchi, “Agricultural Vehicle Robot,” J. Robot. Mechatron., Vol.30, No.2, pp. 165-172, 2018.
  10. [10] R. Iinuma, Y. Kojima, H. Onoyama, T. Fukao, S. Hattori, and Y. Nonogaki, “Pallet Handling System with an Autonomous Forklift for Outdoor Fields,” J. Robot. Mechatron., Vol.32, No.5, pp. 1071-1079, 2020.
  11. [11] Y. Onishi, T. Yoshida, H. Kurita, T. Fukao, H. Arihara, and A. Iwai, “An automated fruit harvesting robot by using deep learning,” ROBOMECH J., Vol.6, No.13, 2019.
  12. [12] H. Shakhatreh et al., “Unmanned Aerial Vehicles (UAVs): A Survey on Civil Applications and Key Research Challenges,” IEEE Access, Vol.7, pp. 48572-48634, 2019.
  13. [13] M. Kulbacki et al., “Survey of Drones for Agriculture Automation from Planting to Harvest,” Proc. of 2018 IEEE 22nd Int. Conf. on Intelligent Engineering Systems (INES), pp. 353-358, 2018.
  14. [14] N. Inoue, G. Hayashida, T. Urakubo, and T. Fukao, “Development of a Tilt-rotor UAV for Information Gathering,” Proc. of the 2nd Int. Conf. on Maintenance Science and Technology, pp. 239-240, 2014.
  15. [15] C. Toth and G. Jóźków, “Remote sensing platforms and sensors: A survey,” ISPRS J. of Photogrammetry and Remote Sensing, Vol.115, pp. 22-36, 2016.
  16. [16] T. Yoshida and T. Fukao, “Dense 3D Reconstruction Using a Rotational Stereo Camera,” Proc. of 2011 IEEE/SICE Int. Symp. on System Integration, pp. 985-990, 2011.
  17. [17] M. Risqi, U. Saputra, A. Markham, and N. Trigon, “Visual SLAM and Structure from Motion in Dynamic Environments: A Survey,” ACM Computing Surveys, Vol.51, No.2, 37, 2018.
  18. [18] S. Zhang, L. Zheng, and W. Tao, “Survey and Evaluation of RGB-D SLAM,” IEEE Access, Vol.9, pp. 21367-21387, 2021.
  19. [19] H. Xu and J. Zhang, “AANet: Adaptive Aggregation Network for Efficient Stereo Matching,” Proc. of 2020 IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 1959-1968, 2020.
  20. [20] T. Yoshida, T. Fukao, and T. Hasegawa, “Fast Detection of Tomato Peduncle Using Point Cloud with a Harvesting Robot,” J. Robot. Mechatron., Vol.30, No.2, pp. 180-186, 2018.
  21. [21] T. Sugimachi, T. Fukao, T. Ario, Y. Suzuki, and H. Kawashima, “Practical Lateral Control for Autonomous Platooning System of Heavy-Duty Trucks,” Proc. of the 20th ITS World Congress, 4100, 2013.
  22. [22] H. Inou, T. Fukao, S. Totsuka, and Y. Okafuji, “Development of Automatic Steering Control System Based on Optical Flow Model,” Proc. of the 12nd Int. Symp. on Advanced Vehicle Control (AVEC’14), 2014.
  23. [23] Y. Okafuji, T. Fukao, Y. Yokokohji, and H. Inou, “Design of a Preview Driver Model Based on Optical Flow,” IEEE Trans. Intelligent Vehicle, Vol.1, No.3, pp. 266-276, 2016.
  24. [24] Y. Okafuji, C. D. Mole, N. Merat, T. Fukao, Y. Yokokohji, H. Inou, and R. M. Wilkie, “Steering bends and changing lanes: The impact of optic flow and road edges on two point steering control,” J. of Vision, Vol.18, No.9, pp. 1-19, 2018.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Aug. 18, 2022