JRM Vol.35 No.3 pp. 577-585
doi: 10.20965/jrm.2023.p0577


Development of Flexion Posture Formation Mechanism in Wearable Type of Flexor Tendon Rehabilitation Equipment

Takeshi Ikeda*1, Yuki Matsutani*2, Masanori Sato*3, Seiji Furuno*4, and Fusaomi Nagata*1

*1Sanyo-Onoda City University
1-1-1 Daigaku-dori, Sanyo-onoda, Yamaguchi 756-0884, Japan

*2Kindai University
1 Takaya-umenobe, Higashi-hiroshima, Hiroshima 739-2116, Japan

*3Nagasaki Institute of Applied Science
536 Aba-machi, Nagasaki, Nagasaki 851-0193, Japan

*4National Institute of Technology, Kitakyushu College
5-20-1 Shii, Kokuraminami-ku, Kitakyushu, Fukuoka 802-0985, Japan

December 1, 2022
April 14, 2023
June 20, 2023
flexor tendon, rehabilitation brace, mechanism, wearable device, flexion posture

Rehabilitation robots and rehabilitation braces are in demand, as they aid in reducing a patient’s need for therapist’s attendance and guidance during therapy. This study focuses on the bending of fingers under the tension of the fingertips using clinical equipment and demonstrates the development of a small and versatile rehabilitation brace.

Wearable rehabilitation device

Wearable rehabilitation device

Cite this article as:
T. Ikeda, Y. Matsutani, M. Sato, S. Furuno, and F. Nagata, “Development of Flexion Posture Formation Mechanism in Wearable Type of Flexor Tendon Rehabilitation Equipment,” J. Robot. Mechatron., Vol.35 No.3, pp. 577-585, 2023.
Data files:
  1. [1] M. Sakai, S. Maki, and M. Yamamoto, “Research and Development of Rehabilitation Robot,” AITEC Research Report 2010, pp. 2-5, 2010 (in Japanese).
  2. [2] H. Kawasaki, S. Ito, Y. Ishigure, Y. Nishimoto, T. Aoki, M. Abe, H. Sakaeda, T. Ojika, T. Mouri, and S. Ueki, “Hand Rehabilitation Assist Robot Designed with Assistance for Thumb Opposability,” Trans. of the Japan Society of Mechanical Engineers, Series C, Vol.74, No.748, pp. 3019-3027, 2008 (in Japanese).
  3. [3] I. Sarakoglou, N. G. Tsagarakis, and D. G. Caldwell, “Occupational and Physical Therapy Using a Hand Exoskeleton Based Exerciser,” Proc. of 2004 IEEE/RSJ Int. Conf. on Intelligent Robotics and Systems, Vol.3, pp. 2973-2978, 2004.
  4. [4] A. Wege and G. Hommel, “Development and Control of a Hand Exoskeleton for Rehabilitation of Hand Injuries,” Proc. of 2005 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 3461-3466, 2005.
  5. [5] K. Hongo, Y. Nakanishi, M. Yoshida, I. Mizuuchi, and M. Inaba, “Development of Bilateral Wearable Device Kento for Control Robots Using Muscle-Actuator Modules,” J. Robot. Mechatron., Vol.22, No.3, pp. 308-314, 2010.
  6. [6] Y. Li, Y. Gong, J.-R. Zhuang, J. Yang, K. Osawa, K. Nakagawa, H. Lee, L. Yuge, and E. Tanaka, “Development of Automatic Controlled Walking Assistive Device Based on Fatigue and Emotion Detection,” J. Robot. Mechatron., Vol.34, No.6, pp. 1383-1397, 2022.
  7. [7] K. Nishizawa, T. Tsumugiwa, and R. Yokogawa, “Gait Rehabilitation and Locomotion Support System Using a Distributed Controlled Robot System,” J. Robot. Mechatron., Vol.34, No.1, pp. 72-85, 2022.
  8. [8] Q. An, Y. Ishikawa, W. Wen, S. Ishiguro, K. Ohata, H. Yamakawa, Y. Tamura, A. Yamashita, and H. Asama, “Skill Abstraction of Physical Therapists in Hemiplegia Patient Rehabilitation Using a Walking Assist Robot,” Int. J. Automation Technol., Vol.13, No.2, pp. 271-278, 2019.
  9. [9] M. Kashima, H. Arakawa, S. Kimura, R. Nishihama, K. Yokoyama, I. Kikutani, and T. Nakamura, “Development of Assist Suit for Squat Lifting Support Considering Gait and Quantitative Evaluation by Three-Dimensional Motion Analysis,” J. Robot. Mechatron., Vol.32, No.1, pp. 209-219, 2020.
  10. [10] A. Akagi, S. Tsuichihara, S. Kosugi, and H. Takemura, “Development of a Rehabilitation and Training Device Considering the Ankle Degree of Freedom,” J. Robot. Mechatron., Vol.32, No.3, pp. 673-682, 2020.
  11. [11] M. Tagami, M. Hasegawa, W. Tanahara, and Y. Tagawa, “Prototype of a Continuous Passive Motion Device for the Knee Joint with a Function of Active Exercise,” J. Robot. Mechatron., Vol.34, No.1, pp. 28-39, 2022.
  12. [12] T. Tamamoto, K. Koyanagi, Y. Kimura, M. Koyanagi, A. Inoue, T. Murabayashi, T. Oshima, T. Tsukagoshi, and K. Noda, “Mechanism and Effect of Tread Swing for Lower Limbs Strength Training Device,” J. Robot. Mechatron., Vol.34, No.1, pp. 101-110, 2022.
  13. [13] Y. Yamada, H. Arakawa, T. Watanabe, S. Fukuyama, R. Nishihama, I. Kikutani, and T. Nakamura, “TasKi: Overhead Work Assistance Device with Passive Gravity Compensation Mechanism,” J. Robot. Mechatron., Vol.32, No.1, pp. 138-148, 2020.
  14. [14] T. Kosaki and S. Li, “A Water-Hydraulic Upper-Limb Assistive Exoskeleton System with Displacement Estimation,” J. Robot. Mechatron., Vol.32, No.1, pp. 149-156, 2020.
  15. [15] H. Kozuka, D. Uchijima, and H. Tachiya, “Motion-Assist Arm with a Passive Joint for an Upper Limb,” J. Robot. Mechatron., Vol.32, No.1, pp. 183-198, 2020.
  16. [16] M. A. Jacobs and N. M. Austin (Eds.), “Splinting the Hand and Upper Extremity: Principles and Process,” pp. 367-370, Lippincott Williams & Wilkins, 2002.
  17. [17] A. Ke, J. Huang, and J. He, “An Underactuated Prosthetic Hand with Coupled Metacarpophalangeal Joints,” J. Adv. Comput. Intell. Intell. Inform., Vol.22, No.5, pp. 674-682, 2018.
  18. [18] W. Chen, G. Li, N. Li, W. Wang, P. Yu, R. Wang, X. Xue, X. Zhao, and L. Liu, “Soft Exoskeleton with Fully Actuated Thumb Movements for Grasping Assistance,” IEEE Trans. on Robotics, Vol.38, No.4, pp. 2194-2207, 2022.
  19. [19] Y. Han, Q. Xu, and F. Wu, “Design of Wearable Hand Rehabilitation Glove with Bionic Fiber-Reinforced Actuator,” IEEE J. of Translational Engineering in Health and Medicine, Vol.10, Article No.2100610, 2022.
  20. [20] Y. Matui, D. Hosomi, and M. Takaiwa, “Development of Finger-Wrist Rehabilitation Device Using Pneumatically Driven Parallel Sticks,” J. Robot. Mechatron., Vol.32, No.5, pp. 1044-1051, 2020.
  21. [21] T. Mouri, H. Kawasaki, Y. Nishimoto, T. Aoki, Y. Ishigure, and M. Tanahashi, “Robot Hand Imitating Disabled Person for Education/Training of Rehabilitation,” J. Robot. Mechatron., Vol.20, No.2, pp. 280-288, 2008.
  22. [22] S. Koizumi, T.-H. Chang, H. Nabae, G. Endo, K. Suzumori, M. Mita, K. Saito, K. Hatakeyama, S. Chida, and Y. Shimada, “Prototype of Hand Rehabilitation Glove with Thin McKibben Muscles,” The Proc. of the 2019 JSME Annual Conf. on Robotics and Mechatronics, Article No.1P1-A08, 2019 (in Japanese).
  23. [23] P. Polygerinos, Z. Wang, K. C. Galloway, R. J. Wood, and C. J. Walsh, “Soft Robotic Glove for Combined Assistance and At-Home Rehabilitation,” Robotics and Autonomous Systems, Vol.73, pp. 135-143, 2015.
  24. [24] K. Sakai, K. Doi, T. Toyoumi, S. Sumiura, T. Tominaga, and S. Kawai, “Primary Suture for Flexor Tendon Rupture in Zone II,” Orthopedics & Traumatology, Vol.35, No.3, pp. 954-957, 1987 (in Japanese).

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jul. 12, 2024