single-rb.php

JRM Vol.35 No.4 pp. 1047-1051
doi: 10.20965/jrm.2023.p1047
(2023)

Review:

Biomolecular Motor-Based Swarm Robot: An Innovation in Molecular Delivery

Mousumi Akter* ORCID Icon and Akira Kakugo** ORCID Icon

*Institute of Molecular Biology, University of Oregon
1229 University of Oregon, 1318 Franklin Blvd, Eugene 97403, USA

**Department of Physics, Graduate School of Science, Kyoto University
Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan

Received:
January 20, 2023
Accepted:
March 29, 2023
Published:
August 20, 2023
Keywords:
biomolecular motor, swarm robot, molecular delivery, microtubule, DNA
Abstract

Biomolecular motor-based micro-sized robots have recently created an innovation in the field of science and technology as molecular transporters. Groups of these tiny robots can work substantially better than individual ones in terms of the transported distance and number or size of cargo. Site-specific molecular delivery, the main feature of these robots, has helped to improve the workability of robots in a more controllable manner.

Construction of micro-sized molecular swarm robots for cargo transportation

Construction of micro-sized molecular swarm robots for cargo transportation

Cite this article as:
M. Akter and A. Kakugo, “Biomolecular Motor-Based Swarm Robot: An Innovation in Molecular Delivery,” J. Robot. Mechatron., Vol.35 No.4, pp. 1047-1051, 2023.
Data files:
References
  1. [1] S. Bahar, “Flocking, Swarming, and Communicating,” in “The Essential Tension,” The Frontiers Collection, Springer, Dordrecht, pp. 127-152, 2018. https://doi.org/10.1007/978-94-024-1054-9_8
  2. [2] M. Rubenstein, A. Cornejo, and R. Nagpal, “Programmable self-assembly in a thousand-robot swarm,” Science, Vol.345, pp. 795-799, 2014. https://doi.org/10.1126/science.1254295
  3. [3] R. Vicerra, E. Dadios, A. Bandala, and L. Lim, “Swarm Robot System for Underwater Communication Network,” J. Adv. Comput. Intell. Intell. Inform., Vol.18, No.5, pp. 769-775, 2014. https://doi.org/10.20965/jaciii.2014.p0769
  4. [4] M. Schranz, M. Umlauft, M. Sende, and W. Elmenreich, “Swarm Robotic Behaviors and Current Applications,” Front. Robot. AI, Vol.7, Article No.36, 2020. https://doi.org/10.3389/frobt.2020.00036
  5. [5] J. Katuri, W. E. Uspal, M. N. Popescu, and S. Sánchez, “Inferring non-equilibrium interactions from tracer response near confined active Janus particles,” Sci. Adv., Vol.7, No.18, 2021. https://doi.org/10.1126/sciadv.abd0719
  6. [6] P. Grančič and F. Štěpánek, “Swarming behavior of gradient-responsive colloids with chemical signaling,” J. of Physical Chemistry B., Vol.117, No.26, pp. 8031-8038, 2013. https://doi.org/10.1021/jp400234n
  7. [7] B. Dai, J. Wang, Z. Xiong, X. Zhan, W. Dai, C.-C. Li, S.-P. Feng, and J. Tang, “Programmable artificial phototactic microswimmer,” Nat. Nanotechnol., Vol.11, pp. 1087-1092, 2016. https://doi.org/10.1038/nnano.2016.187
  8. [8] T. Vicsek, “Swarming microtubules,” Nature, Vol.483, pp. 411-412, 2012. https://doi.org/10.1038/483411a
  9. [9] M. Akter, J. J. Keya, A. M. R. Kabir, H. Asanuma, K. Murayama, K. Sada, and A. Kakugo, “Photo-regulated trajectories of gliding microtubules conjugated with DNA,” Chem. Comm., Vol.57, pp. 7953-7956, 2020. https://doi.org/10.1039/D0CC03124K
  10. [10] J. J. Keya, R. Suzuki, A. M. R. Kabir, D. Inoue, H. Asanuma, K. Sada, H. Hess, A. Kuzuya, and A. Kakugo, “DNA-assisted swarm control in a biomolecular motor system,” Nat. Commun., Vol.9, Article No.453, 2018. https://doi.org/10.1038/s41467-017-02778-5
  11. [11] J. J. Keya, A. M. R. Kabir, D. Inoue, K. Sada, H. Hess, A. Kuzuya, and A. Kakugo, “Control of swarming of molecular robots,” Sci. Rep., Vol.8, Article No.11756, 2018. https://doi.org/10.1038/s41598-018-30187-1
  12. [12] M. Akter, J. J. Keya, K. Kayano, A. M. R. Kabir, D. Inoue, H. Hess, K. Sada, A. Kuzuya, H. Asanuma, and A. Kakugo, “Cooperative cargo transportation by a swarm of molecular machines,” Sci. Robot., Vol.7, Article No.eabm0677, 2022. https://doi.org/10.1126/scirobotics.abm0677
  13. [13] H. Hess and G. D. Bachand, “Biomolecular motors,” Materials Today, Vol.8, No.12, pp. 22-29, 2005. https://doi.org/10.1016/S1369-7021(05)71286-4
  14. [14] H. Hess, “Engineering applications of biomolecular motors,” Annu. Rev. Biomed. Eng., Vol.13, pp. 429-450, 2011. https://doi.org/10.1146/annurev-bioeng-071910-124644
  15. [15] S. Hamada, “Molecular Robotics,” M. H. Ang, O. Khatib, and B. Siciliano (Eds.), “Encyclopedia of Robotics,” Springer, Berlin, Heidelberg, 2021. https://doi.org/10.1007/978-3-642-41610-1_189-1
  16. [16] Y. Sato, Y. Hiratsuka, I. Kawamata, S. Murata, and S. I. M. Nomura, “Micrometer-sized molecular robot changes its shape in response to signal molecules,” Sci. Robot., Vol.2, No.4, Artcle No.ieaal3735, 2017. https://doi.org/10.1126/scirobotics.aal3735
  17. [17] H. Asanuma, X. Liang, H. Nishioka, D. Matsunaga, M. Liu, and M. Komiyama, “Synthesis of azobenzene-tethered DNA for reversible photo-regulation of DNA functions: hybridization and transcription,” Nat. Protoc., Vol.2, No.1, pp. 203-212, 2007. https://doi.org/10.1038/nprot.2006.465
  18. [18] M. R. Rashid, C. Ganser, M. Akter, S. R. Nasrin, A. M. R. Kabir, K. Sada, T. Uchihashi, and A. Kakugo, “3D structure of ring-shaped microtubule swarms revealed by high-speed atomic force microscopy,” Chem. Lett., Vol.52, No.2, pp. 100-104, 2023. https://doi.org/10.1246/cl.220491
  19. [19] S. M. Früh, D. Steuerwald, U. Simon, and V. Vogel, “Covalent cargo loading to molecular shuttles via copper-free “click chemistry”,” Biomacromolecules, Vol.13, No.2, pp. 3908-3911, 2012. https://doi.org/10.1021/bm301437c
  20. [20] B. Nitzsche, F. Ruhnow, and S. Diez, “Quantum-dot-assisted characterization of microtubule rotations during cargo transport,” Nat. Nanotechnol., Vol.3, pp. 552-556, 2008. https://doi.org/10.1038/nnano.2008.216
  21. [21] C. Brunner, C. Wahnes, and V. Vogel, “Cargo pick-up from engineered loading stations by kinesin driven molecular shuttles,” Lab on a Chip, Vol.7, No.10, pp. 1263-1271, 2007. https://doi.org/10.1039/B707301A
  22. [22] Y. Yang and M. A. Bevan, “Cargo capture and transport by colloidal swarms,” Sci Adv., Vol.6, No.4, Article No.eaay7679, 2020. https://doi.org/10.1126/sciadv.aay7679
  23. [23] T. Yasuda and K. Ohkura, “Sharing Experience for Behavior Generation of Real Swarm Robot Systems Using Deep Reinforcement Learning,” J. Robot. Mechatron., Vol.31, No.4, pp. 520-525, 2019. https://doi.org/10.20965/jrm.2019.p0520
  24. [24] Z. Zou, Y. Liu, Y.-N. Young, O. S. Pak, and A. C. H. Tsang, “Gait switching and targeted navigation of microswimmers via deep reinforcement learning,” Commun. Phys., Vol.5, Article No.158, 2022. https://doi.org/10.1038/s42005-022-00935-x
  25. [25] T. Lymburn, S. D. Algar, M. Small, and T. Jüngling, “Reservoir computing with swarms,” Chaos: An Interdisciplinary J. of Nonlinear Science, Vol.31, No.3, Article No.033121, 2021. https://doi.org/10.1063/5.0039745

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Oct. 01, 2024