single-rb.php

JRM Vol.33 No.3 pp. 466-474
doi: 10.20965/jrm.2021.p0466
(2021)

Paper:

Seabird Biologging System with Compact Waterproof Airflow Sensor

Hidetoshi Takahashi*1, Masaru Naruoka*2, Yoshinobu Inada*3, and Katsufumi Sato*4

*1Department of Mechanical Engineering, Faculty of Science and Technology, Keio University
3-14-1 Hiyoshi, Kouhoku-ku, Yokohama, Kanagawa 223-8522, Japan

*2Aeronautical Technology Directorate, Japan Aerospace Exploration Agency (JAXA)
6-13-1 Osawa, Mitaka, Tokyo 181-0015, Japan

*3Department of Aeronautics and Astronautics, School of Engineering, Tokai University
4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan

*4Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo
5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan

Received:
December 20, 2020
Accepted:
March 10, 2021
Published:
June 20, 2021
Keywords:
biologging, seabird, airflow sensor, wind tunnel experiment
Abstract
Seabird Biologging System with Compact Waterproof Airflow Sensor

A stuffed seabird with the waterproof airflow sensor

This paper presents a seabird biologging system with a compact waterproof airflow sensor. Although biologging methods have attracted attention in the evaluation of seabird flight performance, a direct measurement method of airflow velocity has not yet been established. When an airflow sensor is added to a biologging system, a more accurate assessment of the flight performance can be obtained. We developed a compact Pitot tube-type airflow sensor that is specialized for seabird biologging systems. Here, we integrated micro electro mechanical system (MEMS) sensor chips and a sensing circuit into the Pitot tube housing. Then, we conducted a wind tunnel experiment using a stuffed seabird and the fabricated sensor. The results confirmed that the sensor responds to the wind speed even when attached to the dorsal surface of the seabird. Based on the above, we believe that the proposed sensor can be applied to practical seabird biologging systems.

Cite this article as:
Hidetoshi Takahashi, Masaru Naruoka, Yoshinobu Inada, and Katsufumi Sato, “Seabird Biologging System with Compact Waterproof Airflow Sensor,” J. Robot. Mechatron., Vol.33, No.3, pp. 466-474, 2021.
Data files:
References
  1. [1] I. L. Boyd, A. Kato, and Y. Ropert-Coudert, “Bio-logging science: sensing beyond the boundaries,” Mem. Natl Inst. Polar Res., Spec. Issue, Vol.58, pp. 1-14, 2004.
  2. [2] Y. Ropert-Coudert and R. P. Wilson, “Trends and perspectives in animal-attached remote sensing,” Front. Ecol. Environ., Vol.3, No.8, pp. 437-444, doi: 10.1890/1540-9295(2005)003[0437:TAPIAR]2.0.CO;2, 2005.
  3. [3] R. B. Tyson, W. E. D. Piniak, C. Domit, D. Mann, M. Hall, D. P. Nowacek, and M. M. P. B. Fuentes, “Novel Bio-Logging Tool for Studying Fine-Scale Behaviors of Marine Turtles in Response to Sound,” Front. Mar. Sci., Methods, Vol.4, No.219, doi: 10.3389/fmars.2017.00219, 2017.
  4. [4] S. J. Cooke, S. G. Hinch, M. Wikelski, R. D. Andrews, L. J. Kuchel, T. G. Wolcott, and P. J. Butler, “Biotelemetry: a mechanistic approach to ecology,” Trends Ecol. Evol., Vol.19, No.6, pp. 334-343, doi: 10.1016/j.tree.2004.04.003, 2004.
  5. [5] Y. Kogure, K. Sato, Y. Watanuki, S. Wanless, and F. Daunt, “European shags optimize their flight behavior according to wind conditions,” J. Exp. Biol., Vol.219, No.3, pp. 311-318, doi: 10.1242/jeb.131441, 2016.
  6. [6] K. Yoda, T. Tajima, S. Sasaki, K. Sato, and Y. Niizuma, “Influence of Local Wind Conditions on the Flight Speed of the Great Cormorant Phalacrocorax carbo,” Int. J. Zool., Vol.2012, 187102, doi: 10.1155/2012/187102, 2012.
  7. [7] Y. Y. Watanabe, A. Takahashi, K. Sato, M. Viviant, and C.-A. Bost, “Poor flight performance in deep-diving cormorants,” J. Exp. Biol., Vol.214, No.3, pp. 412-421, doi: 10.1242/jeb.050161, 2011.
  8. [8] H. Takahashi, A. Nakai, and I. Shimoyama, “Waterproof airflow sensor for seabird bio-logging using a highly sensitive differential pressure sensor and nano-hole array,” Sens. Actuators A, Vol.281, pp. 243-249, doi: 10.1016/j.sna.2018.08.050, 2018.
  9. [9] Y. Yonehara, Y. Goto, K. Yoda, Y. Watanuki, L. C. Young, H. Weimerskirch, C.-A. Bost, and K. Sato, “Flight paths of seabirds soaring over the ocean surface enable measurement of fine-scale wind speed and direction,” Proc. Natl. Acad. Sci. USA, Vol.113, No.32, pp. 9039-9044, doi: 10.1073/pnas.1523853113, 2016.
  10. [10] K. Yoda, “Advances in bio-logging techniques and their application to study navigation in wild seabirds,” Advanced Robotics, Vol.33, Nos.3-4, pp. 108-117, doi: 10.1080/01691864.2018.1553686, 2019.
  11. [11] J. Korpela, H. Suzuki, S. Matsumoto, Y. Mizutani, M. Samejima, T. Maekawa, J. Nakai, and K. Yoda, “Machine learning enables improved runtime and precision for bio-loggers on seabirds,” Commun. Biol., Vol.3, No.1, doi: 10.1038/s42003-020-01356-8, 2020.
  12. [12] Y. Goto, K. Yoda, and K. Sato, “Asymmetry hidden in birds’ tracks reveals wind, heading, and orientation ability over the ocean,” Science Advances, Vol.3, No.9, e1700097, doi: 10.1126/sciadv.1700097, 2017.
  13. [13] S. P. Vandenabeele, E. L. Shepard, A. Grogan, and R. P. Wilson, “When three per cent may not be three per cent; device-equipped seabirds experience variable flight constraints,” Mar. Biol., Vol.159, No.1, pp. 1-14, doi: 10.1007/s00227-011-1784-6, 2012.
  14. [14] P. A. Blackmore, “A static pressure probe for use in turbulent three-dimensional flows,” J. Wind. Eng. Ind. Aerodyn., Vol.25, No.2, pp. 207-218, doi: 10.1016/0167-6105(87)90017-1, 1987.
  15. [15] G. P. Russo, “Aerodynamic Measurements: from physical principles to turnkey instrumentation,” Woodhead Publishing, 2011.
  16. [16] N. Minh-Dung, H. Takahashi, K. Kuwana, T. Takahata, K. Matsumoto, and I. Shimoyama, “3D Airflow Velocity Vector Sensor,” Proc. of 2011 IEEE 24th Int. Conf. on Micro Electro Mechanical Systems (MEMS 2011), pp. 513-516, 2011.
  17. [17] S. F. Hoerner, “Fluid-dynamic drag,” Hoerner Fluid Dynamics, 1965.
  18. [18] H. Takahashi, N. M. Dung, K. Matsumoto, and I. Shimoyama, “Differential pressure sensor using a piezoresistive cantilever,” J. Micromech. Microeng., Vol.22, No.5, 055015, doi: 10.1088/0960-1317/22/5/055015, 2012.
  19. [19] N. Thanh-Vinh, H. Takahashi, and I. Shimoyama, “MEMS-based pressure sensor with a superoleophobic membrane for measuring droplet vibration,” Proc. of 19th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers 2017), pp. 1152-1155, 2017.
  20. [20] H. Takahashi, T. Kan, A. Nakai, T. Takahata, T. Usami, and I. Shimoyama, “Highly sensitive and low-crosstalk angular acceleration sensor using mirror-symmetric liquid ring channels and MEMS piezoresistive cantilevers,” Sens. Actuators A, Vol.287, pp. 39-47, doi: 10.1016/j.sna.2019.01.006,2019.
  21. [21] N. Minh-Dung, H. Takahashi, T. Uchiyama, K. Matsumoto, and I. Shimoyama, “A barometric pressure sensor based on the air-gap scale effect in a cantilever,” Appl. Phys. Lett., Vol.103, No.14, 143505, doi: 10.1063/1.4824027, 2013.
  22. [22] R. Wada and H. Takahashi, “Time response characteristics of a highly sensitive barometric pressure change sensor based on MEMS piezoresistive cantilevers,” Jpn. J. Appl. Phys., Vol.59, No.7, p. 070906, doi: 10.35848/1347-4065/ab9ba1, 2020.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Oct. 15, 2021