single-rb.php

JRM Vol.35 No.5 pp. 1219-1226
doi: 10.20965/jrm.2023.p1219
(2023)

Paper:

Patterning-Based Self-Assembly of Specific and Functional Structures

Taichi Kokubu, Tatsuya Hikida, and Hiroaki Suzuki ORCID Icon

Graduate School of Science and Engineering, Chuo University
1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan

Received:
May 29, 2023
Accepted:
July 10, 2023
Published:
October 20, 2023
Keywords:
fluidic self-assembly, selective assembly, adhesive pattern, gel actuator
Abstract

In this study, we developed a system for selective self-assembly of millimeter-scale components differentiated by adhesive patterns. This was achieved by designing concentric circular patterns having different radii but the same total length of peripheries. Small polymer sheets having solder adhesive patterns in these designs were simply attached to the millimeter-scale components to be assembled in a stirring container. This strategy was effective in avoiding an overlap between different patterns and enforcing the selective bonds between identical patterns among three types of components. Finally, the selective assembly of a functional structure (i.e., poly(N-isopropylacrylamide) gel actuator) was demonstrated.

Selective self-assembly of gel actuators

Selective self-assembly of gel actuators

Cite this article as:
T. Kokubu, T. Hikida, and H. Suzuki, “Patterning-Based Self-Assembly of Specific and Functional Structures,” J. Robot. Mechatron., Vol.35 No.5, pp. 1219-1226, 2023.
Data files:
References
  1. [1] M. Boncheva and G. M. Whitesides, “Making things by self-assembly,” Mrs. Bull., Vol.30, No.10, pp. 736-742, 2005. https://doi.org/10.1557/mrs2005.208
  2. [2] M. Mastrangeli, S. Abbasi, C. Varel, C. Van Hoof, J. P. Celis, and K. F. Bohringer, “Self-assembly from milli-to nanoscales: methods and applications,” J. Micromech. Microeng., Vol.19, No.8, Article No.083001, 2009. https://doi.org.10.1088/0960-1317/19/8/083001
  3. [3] H. O. Jacobs, A. R. Tao, A. Schwartz, D. H. Gracias, and G. M. Whitesides, “Fabrication of a cylindrical display by patterned assembly,” Science, Vol.296, No.5566, pp. 323-325, 2002. https://doi.org.10.1126/science.1069153
  4. [4] J. Fang and K. F. Bohringer, “Parallel micro component-to-substrate assembly with controlled poses and high surface coverage,” J. Micromech. Microeng., Vol.16, No.4, pp. 721-730, 2006. https://doi.org.10.1088/0960-1317/16/4/008
  5. [5] N. B. Crane, O. Onen, J. Carballo, Q. Ni, and R. Guldiken, “Fluidic assembly at the microscale: progress and prospects,” Microfluid. Nanofluid., Vol.14, No.3-4, pp. 383-419, 2013. https://doi.org/10.1007/s10404-012-1060-1
  6. [6] S.-C. Park, J. Fang, S. Biswas, M. Mozafari, T. Stauden, and H. O. Jacobs, “A First Implementation of an Automated Reel-to-Reel Fluidic Self-Assembly Machine,” Adv. Mater., Vol.26, No.34, pp. 5942-5949, 2014. https://doi.org/10.1002/adma.201401573
  7. [7] S.-C. Park, J. Fang, S. Biswas, M. Mozafari, T. Stauden, and H. O. Jacobs, “Approaching Roll-to-Roll Fluidic Self-Assembly: Relevant Parameters, Machine Design, and Applications,” J. Microelectromech. Syst., Vol.24, No.6, pp. 1928-1937, 2015. https://doi.org.10.1109/JMEMS.2015.2452772
  8. [8] D. Karnaushenko, T. Kong, V. K. Bandari, F. Zhu, and O. G. Schmidt, “3D Self-Assembled Microelectronic Devices: Concepts, Materials, Applications,” Adv. Mater., Vol.32, No.15, Article No.1902994, 2020. https://doi.org/10.1002/adma.201902994
  9. [9] A. Terfort, N. Bowden, and G. M. Whitesides, “Three-dimensional self-assembly of millimetre-scale components,” Nature, Vol.386, No.6621, pp. 162-164, 1997. https://doi.org/10.1038/386162a0
  10. [10] J. Tien, T. L. Breen, and G. M. Whitesides, “Crystallization of millimeter-scale objects with use of capillary forces,” J. Am. Chem. Soc., Vol.120, No.48, pp. 12670-12671, 1998. https://doi.org/10.1021/ja982246y
  11. [11] S. R. J. Oliver, N. Bowden, and G. M. Whitesides, “Self-assembly of hexagonal rod arrays based on capillary forces,” J. Colloid. Interf. Sci., Vol.224, No.2, pp. 425-428, 2000. https://doi.org.10.1006/jcis.1999.6695
  12. [12] T. D. Clark, J. Tien, D. C. Duffy, K. E. Paul, and G. M. Whitesides, “Self-assembly of 10-µm-sized objects into ordered three-dimensional arrays,” J. Am. Chem. Soc., Vol.123, No.31, pp. 7677-7682, 2001. https://doi.org/10.1021/ja010634l
  13. [13] H. Onoe, K. Matsumoto, and I. Shimoyama, “Three-dimensional sequential self-assembly of microscale objects,” Small, Vol.3, No.8, pp. 1383-1389, 2007. https://doi.org/10.1002/smll.200600721
  14. [14] J. H. Chung, W. Zheng, T. J. Hatch, and H. O. Jacobs, “Programmable reconfigurable self-assembly: Parallel heterogeneous integration of chip-scale components on planar and nonplanar surfaces,” J. Microelectromech. Syst., Vol.15, No.3, pp. 457-464, 2006. https://doi.org.10.1109/JMEMS.2006.872226
  15. [15] W. Zheng and H. O. Jacobs, “Fabrication of multicomponent microsystems by directed three-dimensional self-assembly,” Adv. Funct. Mater., Vol.15, No.5, pp. 732-738, 2005. https://doi.org/10.1002/adfm.200400595
  16. [16] L. Abelmann, T. A. G. Hageman, P. A. Lothman, M. Mastrangeli, and M. C. Elwenspoek, “Three-dimensional self-assembly using dipolar interaction,” Sci. Adv., Vol.6, No.19, Article No.eaba2007, 2020. https://doi.org.10.1126/sciadv.aba2007
  17. [17] J. G. Fernandez and A. Khademhosseini, “Micro-Masonry: Construction of 3D Structures by Microscale Self-Assembly,” Adv. Mater., Vol.22, No.23, pp. 2538-2541, 2010. https://doi.org/10.1002/adma.200903893
  18. [18] C. Murphy, Y. Q. Cao, N. Sepulveda, and W. Li, “Quick self-assembly of bio-inspired multi-dimensional well-ordered structures induced by ultrasonic wave energy,” PLoS One, Vol.16, No.2, Article No.e0246453, 2021. https://doi.org/10.1371/journal.pone.0246453
  19. [19] I. Routa, B. Chang, A. Shah, and Q. Zhou, “Surface Tension-Driven Self-Alignment of Microchips on Low-Precision Receptors,” J. Microelectromech. Syst., Vol.23, No.4, pp. 819-828, 2014. https://doi.org.10.1109/JMEMS.2013.2293602
  20. [20] M. Mastrangeli, Q. Zhou, V. Sariola, and P. Lambert, “Surface tension-driven self-alignment,” Soft Matter, Vol.13, No.2, pp. 304-327, 2017. https://doi.org/10.1039/C6SM02078J
  21. [21] T. Okuyama, T. Hikida, T. Okano, and H. Suzuki, “Selective self-assembly of three-component system based on hydrophilic/hydrophobic patterning,” Sens. Act. A: Physical, Vol.312, Article No.112143, 2020. https://doi.org/10.1016/j.sna.2020.112143
  22. [22] M. R. de Moura, F. A. Aouada, M. R. Guilherme, E. Radovanovic, A. F. Rubira, and E. C. Muniz, “Thermo-sensitive IPN hydrogels composed of PNIPAAm gels supported on alginate-Ca2+ with LCST tailored close to human body temperature,” Polym. Test., Vol.25, No.7, pp. 961-969, 2006. https://doi.org/10.1016/j.polymertesting.2006.06.002
  23. [23] K. Matsubara, D. Tachibana, R. Matsuda, H. Onoe, O. Fuchiwaki, and H. Ota, “Hydrogel Actuator with a Built-In Stimulator Using Liquid Metal for Local Control,” Adv. Intell. Syst.-Ger., Vol.2, No.5, Article No.2000008, 2020. https://doi.org/10.1002/aisy.202000008
  24. [24] K. Nakayama, T. Hikida, and H. Suzuki, “In-plane orientational control of electric components using pattern complementarity in a self-assembling system,” J. Microelectromech. Syst., 2023. https://ieeexplore.ieee.org/document/10198510
  25. [25] U. Srinivasan, D. Liepmann, and R. T. Howe, “Microstructure to substrate self-assembly using capillary forces,” J. MEMS, Vol.10, No.1, pp. 17-24, 2001. https://doi.org.10.1109/84.911087
  26. [26] M. Mastrangeli, Q. Zhou, V. Sariola, and P. Lambert, “Surface tension-driven self-alignment,” Soft Matter, Vol.13, pp. 304-327, 2017. https://doi.org/10.1039/C6SM02078J

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Apr. 22, 2024