single-rb.php

JRM Vol.35 No.5 pp. 1290-1299
doi: 10.20965/jrm.2023.p1290
(2023)

Paper:

Decentralized Control Mechanism Underlying Morphology-Dependent Quadruped Turning

Hayato Amaike*,**, Akira Fukuhara* ORCID Icon, Takeshi Kano* ORCID Icon, and Akio Ishiguro* ORCID Icon

*Research Institute of Electrical Communication, Tohoku University
2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan

**Graduate School of Biomedical Engineering, Tohoku University
6-6 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan

Received:
January 10, 2023
Accepted:
June 24, 2023
Published:
October 20, 2023
Keywords:
quadruped robot, turning behavior, load distribution
Abstract

Quadruped mammals can control the movement of their center of gravity when turning by skillfully utilizing their bodies to achieve adaptive turning movements. Interestingly, the low-speed turning behavior also changes depending on the animal’s morphology. Therefore, this study aims to understand the control algorithm of low-speed turning, which can reproduce the turning behavior according to the location of the center of gravity. Specifically, we constructed a control algorithm based on the knowledge that animals steer with the leg closest to the center of gravity and verified it with a quadruped robot whose center of gravity could be adjusted. Consequently, the behavior observed in animals was successfully reproduced, with a stable and large turning angle per time when the proposed control algorithm was used.

Quadruped robot developed for turning experiments

Quadruped robot developed for turning experiments

Cite this article as:
H. Amaike, A. Fukuhara, T. Kano, and A. Ishiguro, “Decentralized Control Mechanism Underlying Morphology-Dependent Quadruped Turning,” J. Robot. Mechatron., Vol.35 No.5, pp. 1290-1299, 2023.
Data files:
References
  1. [1] J. W. Wilson, M. G. L. Mills, R. P. Wilson, G. Peters, M. E. J. Mills, J. R. Speakman, S. M. Durant, N. C. Bennett, N. J. Marks, and M. Scantlebury, “Cheetahs, Acinonyx jubatus, balance turn capacity with pace when chasing prey,” Biol. Lett., Vol.9, No.5, pp. 5-8, 2013. https://doi.org/10.1098/rsbl.2013.0620
  2. [2] A. M. Wilson, T. Y. Hubel, S. D. Wilshin, J. C. Lowe, M. Lorenc, O. P. Dewhirst, H. L. A. Bartlam-Brooks, R. Diack, E. Bennitt, K. A. Golabek, R. C. Woledge, J. W. McNutt, N. A. Curtin, and T. G. West, “Biomechanics of predator-prey arms race in lion, zebra, cheetah and impala,” Nature, Vol.554, No.7691, pp. 183-188, 2018. https://doi.org/10.1038/nature25479
  3. [3] A. A. Biewener, “Animal locomotion,” Oxford Animal Biology Series, Oxford University Press, Oxford, 2003.
  4. [4] A. Patel and M. Braae, “Rapid turning at high-speed: Inspirations from the cheetah’s tail,” IEEE Int. Conf. Intell. Robots Syst., pp. 5506-5511, 2013. https://doi.org/10.1109/IROS.2013.6697154
  5. [5] J. R. Usherwood and A. M. Wilson, “No force limit on greyhound sprint speed,” Nature, Vol.438, pp. 753-754, 2005. https://doi.org/10.1038/438753a
  6. [6] D. Eilam, “Influence of body morphology on turning behavior in carnivores,” J. Mot. Behav., Vol.26, No.1, pp. 3-12, 1994. https://doi.org/10.1080/00222895.1994.9941655
  7. [7] B. Demes, K. J. Carlson, and T. M. Franz, “Cutting corners: The dynamics of turning behaviors in two primate species,” J. Exp. Biol., Vol.209, No.5, pp. 927-937, 2006. https://doi.org/10.1242/jeb.02046
  8. [8] R. J. Corbee, H. Maas, A. Doornenbal, and H. A. W. Hazewinkel, “Forelimb and hindlimb ground reaction forces of walking cats: Assessment and comparison with walking dogs,” Veterinary J., Vol.202, No.1, pp. 116-127, 2014. https://doi.org/10.1016/j.tvjl.2014.07.001
  9. [9] N. Gravish and G. V. Lauder, “Robotics-inspired biology,” J. Exp. Biol., Vol.221, No.7, Article No.jeb138438, 2018. https://doi.org/10.1242/jeb.138438
  10. [10] S. G. Larson and J. T. Stern, “Maintenance of above-branch balance during primate arboreal quadrupedalism: Coordinated use of forearm rotators and tail motion,” Am. J. Phys. Anthropol., Vol.129, No.1, pp. 71-81, 2006. https://doi.org/10.1002/ajpa.20236
  11. [11] S. H. Park, D. S. Kim, and Y. J. Lee, “Discontinuous spinning gait of a quadruped walking robot with waist-joint,” IEEE Int. Conf. Intell. Robots Syst., pp. 2744-2749, 2005. https://doi.org/10.1109/IROS.2005.1544956
  12. [12] C. Li, Q. Shi, Z. Gao, M. Ma, Q. Huang, H. Ishii, A. Takanishi, and T. Fukuda, “Bioinspired Phase-Shift Turning Action for a Biomimetic Robot,” IEEE/ASME Trans. on Mechatronics, Vol.25, No.1, pp. 84-94, 2020. https://doi.org/10.1109/TMECH.2019.2959375
  13. [13] B. Ugurlu, J. A. Saglia, N. G. Tsagarakis, and D. G. Caldwell, “Yaw moment compensation for bipedal robots via intrinsic angular momentum constraint,” Int. J. HR, Vol.9, No.4, Article No.1250033, 2012. https://doi.org/10.1142/S0219843612500326
  14. [14] P. D. Polly, “Limbs in Mammalian Evolution,” Brian K. Hall (Ed.), “Fins into Limbs: Evolution, Development, and Transformation,” University of Chicago Press, pp. 245-268, 2007.
  15. [15] M. Hildebrand, “Motions of the Running Cheetah and Horse,” J. Mammal., Vol.40, No.4, pp. 481-495, 1959. https://doi.org/10.2307/1376265
  16. [16] D. Owaki, T. Kano, K. Nagasawa, A. Tero, and A. Ishiguro, “Simple robot suggests physical interlimb communication is essential for quadruped walking,” J. R. Soc. Interface, Vol.10, No.78, Article No.20120669, 2013. https://doi.org/10.1098/rsif.2012.0669
  17. [17] B. J. Farrell, M. A. Bulgakova, I. N. Beloozerova, M. G. Sirota, and B. I. Prilutsky, “Body stability and muscle and motor cortex activity during walking with wide stance,” J. Neurophysiol., Vol.112, No.3, pp. 504-524, 2014. https://doi.org/10.1152/jn.00064.2014
  18. [18] A. Frigon, T. Akay, and B. I. Prilutsky, “Control of Mammalian Locomotion by Somatosensory Feedback,” Compr. Physiol., Vol.12, No.1, pp. 2877-2947, 2021. https://doi.org/10.1002/cphy.c210020
  19. [19] D. V. Lee, E. F. Stakebake, R. M. Walter, and D. R. Carrier, “Effects of mass distribution on the mechanics of level trotting in dogs,” J. Exp. Biol., Vol.207, No.10, pp. 1715-1728, 2004. https://doi.org/10.1242/jeb.00947
  20. [20] D. M. Henderson, “Burly gaits: Centers of mass, stability, and the trackways of sauropod dinosaurs,” J. Vertebr. Paleontol., Vol.26, No.4, pp. 907-921, 2006. https://doi.org/10.1671/0272-4634(2006)26[907:BGCOMS]2.0.CO;2
  21. [21] S. Ishigaki and Y. Matsumoto, ““Off-tracking”-like phenomenon observed in the turning sauropod trackway from the Upper Jurassic of Morocco,” Memoir of the Fukui Prefectural Dinosaur Museum, Vol.8, pp. 1-10, 2009.
  22. [22] L. Xing, D. Marty, K. Wang, M. G. Lockley, S. Chen, X. Xu, Y. Liu, H. Kuang, J. Zhang, H. Ran, and W. S. Persons, “An unusual sauropod turning trackway from the Early Cretaceous of Shandong Province, China,” Palaeogeogr. Palaeoclimatol. Palaeoecol., Vol.437, pp. 74-84, 2015. https://doi.org/10.1016/j.palaeo.2015.07.036
  23. [23] M. Cartmill, P. Lemelin, and D. Schmitt, “Support polygons and symmetrical gaits in mammals,” Zool. J. Linn., Vol.136, No.3, pp. 401-420, 2002. https://doi.org/10.1046/j.1096-3642.2002.00038.x
  24. [24] T. Sun, X. Xiong, Z. Dai, and P. Manoonpong, “Small-Sized Reconfigurable Quadruped Robot With Multiple Sensory Feedback for Studying Adaptive and Versatile Behaviors,” Front. Neurorobot., Vol.14, 2020. https://doi.org/10.3389/fnbot.2020.00014
  25. [25] S. Suzuki, T. Kano, A. J. Ijspeert, and A. Ishiguro, “Sprawling Quadruped Robot Driven by Decentralized Control With Cross-Coupled Sensory Feedback Between Legs and Trunk,” Front. Neurorobot., Vol.14, 2021. https://doi.org/10.3389/fnbot.2020.607455

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on May. 19, 2024