single-rb.php

JRM Vol.33 No.1 pp. 45-68
doi: 10.20965/jrm.2021.p0045
(2021)

Review:

Soft Robotics: Research, Challenges, and Prospects

Wenchuan Zhao, Yu Zhang, and Ning Wang

School of Mechanical Engineering, Shenyang University of Technology
No.111, Shenliao West Road, Economic and Technological Development Zone, Shenyang 110870, China

Received:
June 30, 2020
Accepted:
November 7, 2020
Published:
February 20, 2021
Keywords:
soft robots, key technologies, application fields, main challenges, development trend
Abstract
Soft Robotics: Research, Challenges, and Prospects

The hydraulic driven robotic claw

The soft robot is a kind of continuum robot, which is mainly made of soft elastic material or malleable material. It can be continuously deformed in a limited space, and can obtain energy in large bending or high curvature distortion. It has obvious advantages such as high security of human-computer interaction, strong adaptability of unstructured environment, high driving efficiency, low maintenance cost, etc. It has wide application prospects in the fields of industrial production, defense military, medical rehabilitation, exploration, and so on. From the perspective of the bionic mechanism, this paper introduces the soft robots corresponding to insect crawling, snake crawling, fish swimming, elephant trunk, arm, etc. According to different driving modes, the soft robots can be classified into pneumatic-hydraulic driven, intelligent material driven, chemical reaction driven, and so on. The mechanical modeling, control strategy, material, and manufacturing methods of soft robot are summarized, and the application fields of soft robot are introduced. This paper analyzes the main challenges faced by the research on the key technologies of soft robots, summarizes and analyzes them, and puts forward the prospects for the future research of soft robots. The development trend of the future is to develop the soft robot with the characteristics of micro-scale, rigid-flexible coupling, variable stiffness, multi-functional, high integration, and intelligence of driving sensor control.

Cite this article as:
Wenchuan Zhao, Yu Zhang, and Ning Wang, “Soft Robotics: Research, Challenges, and Prospects,” J. Robot. Mechatron., Vol.33, No.1, pp. 45-68, 2021.
Data files:
References
  1. [1] T. Wang, Y. Hao, X. Yang, and L. Wen, “Soft Robotics: Structure, Actuation, Sensing and Control,” J. of Mechanical Engineering, Vol.53, No.13, pp. 1-13, 2017.
  2. [2] A. Zolfagharian, A. Z. Kouzani, S. Y. Khooi, A. A. A. Moghadam, I. Gibson, and A. Kaynak, “Evolution of 3D printed soft actuators,” Sensors and Actuators A Physical, Vol.250, pp. 258-272, 2016.
  3. [3] S. I. Rich, R. J. Wood, and C. Majidi, “Untethered soft robotics,” Nature Electronics, Vol.120, pp. 102-112, 2018.
  4. [4] Y. Sugiyama and S. Hirai, “Crawling and jumping by a deformable robot,” Int. J. of Robotics Research, Vol.25, No.56, pp. 603-620, 2006.
  5. [5] Z. Zhang, X. Wang, S. Wang, D. Meng, and B. Liang, “Design and Modeling of a Parallel-Pipe-Crawling Pneumatic Soft Robot,” IEEE Access, Vol.7, pp. 134301-134317, 2019.
  6. [6] M. Sfakiotakis, A. Kazakidi, and D. P. Tsakiris, “Octopus-inspired multi-arm robotic swimming,” Bioinspiration and Biomimetics, Vol.10, No.3, 035005, 2015.
  7. [7] C. Chu, “Research on bionic jellyfish robot system based on SMA flexible actuator modules,” University of Science and Technology of China, 2018.
  8. [8] C. A. Aubin, S. Choudhury, R. Jerch, L. A. Archer, J. H. Pikul, and R. F. Shepherd, “Electrolytic vascular systems for energy-dense robots,” Nature and Science, Vol.43, No.7, pp. 51-67, 2019.
  9. [9] G. Udupa, S. Pramod et al., “Asymmetric Bellow Flexible Pneumatic Actuator for Miniature Robotic Soft Gripper,” J. of Robotics, pp. 1-14, 2014.
  10. [10] H. K. Yap, J. H. Lim, J. C. H. Goh et al., “Design of a Soft Robotic Glove for Hand Rehabilitation of Stroke Patients With Clenched Fist Deformity Using Inflatable Plastic Actuators,” J. of Medical Devices, Vol.10, No.4, 044504, 2016.
  11. [11] T. Ranzani, G. Gerboni, M. Cianchetti et al., “A bioinspired soft manipulator for minimally invasive surgery,” Bioinspiration and Biomimetics, Vol.10, No.3, 035008, 2015.
  12. [12] F. Xu, Y. Guo, Y. Zhou, M. Wu, and Y. Song, “Review of actuator and manufacturing methods in soft robots,” J. of Nanjing University of Posts and Telecommunications (Natural Science Edition), Vol.38, No.4, pp. 73-84, 2018.
  13. [13] K. Suzumori, “Flexible micro-actuator: 2nd report, dynamic characteristics of 3 DOF actuator,” Trans. of the Japan Society of Mechanical Engineers, Vol.56, No.527, pp. 1887-1893, 1990.
  14. [14] Q. Pei, M. Rosenthal, S. Stanford et al., “Multiple-degrees-of-freedom electroelastomer roll actuators,” Smart Materials and Structures, Vol.13, No.5, pp. 86-92, 2004.
  15. [15] C. Laschi, M. Cianchetti, B. Mazzolai et al., “Soft robot arm inspired by the octopus,” Advanced Robotics, Vol.26, No.7, pp. 701-790, 2012.
  16. [16] T. Zheng, D. T. Branson, E. Guglielmino et al., “Model validation of an octopus inspired continuum robotic arm for use in underwater environments,” J. of Mechanisms and Robotics, Vol.6, No.2, 021004, 2013.
  17. [17] F. Renda, F. Giorgio-Serchi, F. Boyer, C. Laschi, J. Dias, and L. Seneviratne, “A multi-soft-body dynamic model for underwater soft robotics,” Proc. Int. Symp. on Robotics Research, pp. 143-160, 2015.
  18. [18] C. Larson, B. Peele, S. Li et al., “Highly stretchable electroluminescent skin for optical signaling and tactile sensing,” Science, Vol.351, No.2667, pp. 1071-1075, 2016.
  19. [19] M. Duduta, D. R. Clarke, and R. J. Wood, “A high speed soft robot based on dielectric elastomer actuators,” Proc. of the 2017 IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 4346-4351, 2017.
  20. [20] A. A. Calderon, J. C. Ugalde et al., “An earthworm-inspired soft robot with perceptive artificial skin,” Bioinspiration and Biomimetics, Vol.14, No.5, pp. 1-19, 2019.
  21. [21] Y. Zhang, N. Wang, W.-C. Zhao, and D.-Y. Lu, “Design and implementation of peristaltic soft pipe robot,” Food and Machinery, Vol.36, No.5, pp. 82-86, 2020.
  22. [22] E. W. Hawkes, L. H. Blumenschein, J. D. Greer et al., “A soft robot that navigates its environment through growth,” Science Robotics, Vol.2, No.8, eaan3028, 2017.
  23. [23] S. S. Yun, J. Y. Lee, G. P. Jung et al., “Development of a transformable wheel actuated by soft pneumatic actuators,” Int. J. of Control, Automation and Systems, Vol.15, No.1, pp. 36-44, 2017.
  24. [24] J. Rossiter, J. Winfield, and I. Ieropoulos, “Eating, drinking, living, dying and decaying soft robots,” Proc. of the Soft Robotics Week, pp. 25-30, 2016.
  25. [25] I. Must, E. Sinibaldi, and B. Mazzolai, “A variable-stiffness tendril-like soft robot based on reversible osmotic actuation,” Nature Communications, Vol.10, No.1, 344, 2019.
  26. [26] H. Lee, C. Xia, and N. X. Fang, “First jump of microgel; actuation speed enhancement by elastic instability,” Soft Matter, Vol.6, No.18, pp. 4342-4345, 2010.
  27. [27] T. Ranzani, S. Russo, N. W. Bartlett et al., “Increasing the dimensionality of soft microstructures through injection induced self-folding,” Advanced Material, Vol.30, No.38, pp. 1-15, 2018.
  28. [28] W. Hu, G. Z. Lum, M. Mastrangeliet al., “Small-scale soft-bodied robot with multimodal locomotion,” Nature, Vol.554, No.769, pp. 81-85, 2018.
  29. [29] D. Rus and M. T. Tolley, “Design, fabrication and control of soft robots,” Nature, Vol.521, No.7553, pp. 467-475, 2015.
  30. [30] S. T. Mahon, J. O. Roberts, M. E. Sayed, D. H.-T. Chun et al., “Capability by Stacking: The Current Design Heuristic for Soft Robots,” Biomimetics, Vol.30, No.3, pp. 16-32, 2018.
  31. [31] C. Majidi, “Mechanics of fluid-elastomer systems in soft robotics,” S. M. Walsh and M. S. Strano (Eds.), “Robotic Systems and Autonomous Platforms,” pp. 425-448, 2019.
  32. [32] C. Laschi, B. Mazzolai, and M. Cianchetti, “Soft robotics: Technologies and systems pushing the boundaries of robot abilities,” Science Robotics, Vol.1, No.1, pp. 1-11, 2016.
  33. [33] T. Li, G. Li, Y. Liang et al., “Review of Materials and Structures in Soft Robotics,” Chinese J. of Theoretical and Applied Mechanics, Vol.48, No.4, pp. 756-766, 2016.
  34. [34] S. I. Rich, R. J. Wood, and C. Majidi, “Untethered soft robotics,” Nature Electronics, Vol.1, No.2, pp. 102-112, 2018.
  35. [35] F. Xu, F. Meng, B. Fan et al., “Review of driving methods, modeling and application in soft robots,” J. of Nanjing University of Posts and Telecommunications (Natural Science Edition), Vol.39, No.3, pp. 64-75, 2019.
  36. [36] Y. Lee, W. J. Song, and J. Y. Sun, “Hydrogel soft robotics,” Materials Today Physics, Vol.15, 100258, 2020.
  37. [37] S. Seok, C. D. Onal et al., “Meshworm: A Peristaltic Soft Robot With Antagonistic Nickel Titanium Coil Actuators,” IEEE/ASME Trans. on Mechatronics, Vol.18, No.5, pp. 1485-1497, 2013.
  38. [38] X. Zhou, Y. Teng, and X. Li, “Development of a new pneumatic-driven earthworm-like soft robot,” Proc. Int. Conf. on Mechatronics and Machine Vision in Practice, pp. 1-5, 2016.
  39. [39] H. T. Lin, G. Gl. Leisk, and B. Trimmer, “GoQBot: a caterpillar inspired soft-bodied rolling robot,” Bioinspiration and Biomimetic, Vol.6, No.2, 026007, 2011.
  40. [40] L. Sui, T. Liu, and Z. Xi, “Analysis and Experiment of Actuating Method for Pneumatic Soft Crawling Robot,” Hydraulic and pneumatic, Vol.327, No.11, pp. 102-106, 2018.
  41. [41] C. D. Onal and D. Rus, “Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot,” Bioinspiration and Biomimetics, Vol.8, No.2, 026003, 2013.
  42. [42] A. D. Marchese, R. K. Katzschmann, and D. L. Rus, “Whole arm planning for a soft and highly compliant 2D robotic manipulator,” Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 554-560, 2014.
  43. [43] Z. Wang, G. Hang, J. Li et al., “A micro-robot fish with embedded SMA wire actuated flexible biomimetic fin,” Sensors and Actuators A: Physical, Vol.144, No.2, pp. 354-360, 2008.
  44. [44] A. D. Marchese, C. D. Onal, and D. Rus, “Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators,” Soft Robotics, Vol.1, No.1, pp. 75-87, 2014.
  45. [45] R. K. Katzschmann, A. D. Marchese, and D. Rus (Eds.), “Hydraulic autonomous soft robotic fish for 3D swimming,” M. A. Hsieh, O. Khatib, and V. Kumar, “Experimental Robotics,” Springer, pp. 405-420, 2016.
  46. [46] K. H. Low, J. Yang, A. P. Pattathil et al., “Initial prototype design and investigation of an undulating body SMA,” Proc. IEEE Int. Conf. on Automation Science and Engineering, New York, pp. 472-477, 2006.
  47. [47] N. Kamamichi, M. Yamakita, I. Asaka et al., “A snake-like swimming robot using IPMC actuator/sensor,” Proc. of the 2006 IEEE Int. Conf. on Robotics and Automation, Florida, pp. 1812-1817, 2006.
  48. [48] Y. Cai, S. Bi, and L. Zheng, “Design and experiments of a robotic fish imitating cow-nosed Ray,” J. of Bionic Engineering, Vol.7, No.2, pp. 120-126, 2010.
  49. [49] T. Li, G. Li, Y. Liang et al., “Fast-moving soft electronic fish,” Science Advances, Vol.3, No.4, e1602045, 2017.
  50. [50] Z. Chen, T. I. Um, and H. Bartsmith, “Ionic polymer-metal composite enabled robotic manta ray,” Proc. SPIE 7976, Electroactive Polymer Actuators and Devices (EAPAD), Vol.1776, No.17, pp. 1-12, 2011.
  51. [51] K. Urai, R. Sawada, N. Hiasa, M. Yokota, and F. DallaLibera, “Design and control of a ray-mimicking soft robot based on morphological features for adaptive deformation,” Artificial Life and Robotics, Vol.20, No.3, pp. 237-243, 2015.
  52. [52] D. Wei, “A prototype of squid like propeller driven by SMA,” Harbin Institute of Technology, 2008.
  53. [53] A. Villanueva, C. Smith, and S. Priya, “A biomimetic robotic jellyfish (Robojelly) actuated by shape memory alloy composite actuators,” Bioinspiration and Biomimetics, Vol.6, No.3, 036004, 2011.
  54. [54] H. Jiang, X. Liu, X. Chen et al., “Design and simulation analysis of a soft manipulator based on honeycomb pneumatic networks,” Proc. IEEE Int. Conf. on Robotics and Biomimetics, pp. 350-356, 2017.
  55. [55] B. T. Phillips, K. P. Becker, S. Kurumaya, K. C. Galloways, G. Whittredge, D. M. Vogt, C. B. Teeple, M. H. Rosen, V. A. Pieribone, D. F. Gruber, and R. J. Wood, “A Dexterous, Glove-Based Teleoperable Low-Power Soft Robotic Arm for Delicate Deep-Sea Biological Exploration,” Scientific Reports, Vol.8, 14779, 2018.
  56. [56] Y. C. Chang and W. Jl. Kim, “Aquatic Ionic-Polymer-Metal-Composite Insectile Robot With Multi-DOF Legs,” IEEE/ASME Trans. on Mechatronics, Vol.18, No.2, pp. 547-555, 2013.
  57. [57] N. W. Bartlett, M. T. Tolley, J. T. B. Overvelde et al., “A 3D-printed, functionally graded soft robot powered by combustion,” Science, Vol.349, No.6244, pp. 161-165, 2015.
  58. [58] Y. Fei and H. Xu, “Modeling and Motion Control of a Soft Robot,” Industrial Electronics, IEEE Trans. on Mechatronics, Vol.64, No.2, pp. 1737-1742, 2017.
  59. [59] K. Suzumori, S. Endo, T. Kanda et al., “A Bending Pneumatic Rubber Actuator Realizing Soft-bodied Manta Swimming Robot,” Proc. IEEE Int. Conf. on Robotics and Automation, pp. 4975-4980, 2007.
  60. [60] R. F. Shepherd, F. Ilievski, W. Choi et al., “Multigait soft robot,” Proc. of the National Academy of Sciences, Vol.108, No.51, pp. 20400-20433, 2011.
  61. [61] J. M. Florez, B. Shih, Y. Bai, and J. K. Paik, “Soft Pneumatic Actuators for Legged Locomotion,” Proc. IEEE Int. Conf. on Robotics and Biomimetics, pp. 27-34, 2014.
  62. [62] L. Lindenroth, J. Back, A. Schoisengeier et al., “Stiffness-based modeling of a hydraulically-actuated soft robotics manipulator,” Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 2458-2463, 2016.
  63. [63] S. Li, D. M. Vogt, D. Rus et al., “Fluid-driven origami-inspired artificial muscles,” Proc. of the National Academy of Sciences, Vol.114, No.50, pp. 13132-13137, 2017.
  64. [64] J. Wang, “Design and research of water-driven artificial jellyfish,” Nanjing University of Science and Technology, 2019.
  65. [65] A. Menciassi, S. Gorini, G. Pernorio et al., “A SMA actuated artificial earthworm,” Proc. IEEE Int. Conf. on Robotics and Automation, pp. 3282-3287, 2004.
  66. [66] H. J. Kim, S. H. Song, and S. H. Ahn, “A turtle-like swimming robot using a smart soft composite (SSC) structure,” Smart Materials and Structures, Vol.22, No.1, 014007, 2012.
  67. [67] S. H. Song, M. S. Kim, H. Rodrigue et al., “Turtle mimetic soft robot with two swimming gaits,” Bioinspirazion and Biomimezics, Vol.11, No.3, 036010, 2016.
  68. [68] K. Jung, J. C. Koo, J. D. Nam et al., “Artificial annelid robot driven by soft actuators,” Bioinspiration and Biomimetics, Vol.2, No.2, pp. 42-49, 2007.
  69. [69] W. B. Li, W. M. Zhang, H. X. Zou et al., “A Fast Rolling Soft Robot Driven by Dielectric Elastomer,” IEEE/ASME Trans. on Mechatronics, Vol.23, No.4, pp. 1630-1640, 2018.
  70. [70] L. Calabrese, A. Berardo, D. D. Rossi et al., “A soft robot structure with limbless resonant, stick and slip locomotion,” Smart Materials and Structures, Vol.28, No.10, 104005, 2019.
  71. [71] J. Najem and D. J. Leo, “A bio-inspired bell kinematics design of a jellyfish robot using ionic polymer metal composites actuators,” Proc. SPIE 8340, Electroactive Polymer Actuators and Devices (EAPAD), 83401Q, 2012.
  72. [72] Q. Shen, T. Wang, J. Liang et al., “Hydrodynamic performance of a biomimetic robotic swimmer actuated by ionic polymer-metal composite,” Smart Materials and Structures, Vol.22, No.7, 075035, 2013.
  73. [73] J. J. Hubbard, M. Fleming, V. Palmre et al., “Monolithic IPMC fins for propulsion and maneuvering in bio-inspired underwater robotics,” IEEE J. of Oceanic Engineering, Vol.39, No.3, pp. 540-551, 2014.
  74. [74] D. Morales, E. Palleau, M. D. Dickey et al., “Electro-actuated hydrogel walkers with dual responsive legs,” Soft Matter, Vol.10, No.9, pp. 1337-1348, 2014.
  75. [75] H. Li, G. Go, S. Y. Ko et al., “Magnetic actuated pH-responsive hydrogel based soft micro-robot for targeted drub delivery,” Smart Materials and Structures, Vol.25, No.2, 027001, 2016.
  76. [76] W. Francis, A. Dunne, C. Delaney, L. Florea, and D. Diamond, “Spiropyran based hydrogels actuators-Walking in the light,” Sensors and Actuators B: Chemical, Vol.250, pp. 608-611, 2017.
  77. [77] T. Xie, “Tunable polymer multi-shape memory effect,” Nature, Vol.464, No.7286, pp. 267-270, 2010.
  78. [78] F. Pilate, A. Toncheva, P. Dubois et al., “Shape-memory polymers for multiple applications in the materials world,” European Polymer J., S0014305716303767, 2016.
  79. [79] J. X. Wang and G. Meng, “Research advances in magnetorheological elastomers,” J. of Functional Materials, Vol.37, No.5, pp. 706-709, 2006.
  80. [80] X. Lu, Z. Zhang, H. Li et al., “Conjugated polymer composite artificial muscle with solvent-induced anisotropic mechanical actuation,” J. of Materials Chemistry A, Vol.2, No.7035, pp. 17272-17280, 2014.
  81. [81] Y. Yang, Y. Chen, Y. Wei et al., “3D printing of shape memory polymer for functional part fabrication,” The Int. J. of Advanced Manufacturing Technology, Vol.84, No.9, pp. 2079-2095, 2016.
  82. [82] H. Taniguchi, M. Miyake, and K. Suzumori, “Development of new soft actuator using magnetic intelligent fluids for flexible walking robot,” Proc. Int. Conf. on Control Automation and Systems, pp. 1797-1801, 2010.
  83. [83] T. Nishida, Y. Okatani, and K. Tadakuma, “Development of universal robot gripper using MR and fluid,” Int. J. of Humanoid Robotics, Vol.13, No.4, pp. 231-235, 2016.
  84. [84] R. F. Shepherd, A. A. Stokes, J. Freake et al., “Using explosions to power a soft robot,” Angewandte Chemie Int. Edition, Vol.52, No.10, pp. 2892-2896, 2013.
  85. [85] M. Wehner, R. L. Truby, D. J. Fitzgerald et al., “An integrated design and fabrication strategy for entirely soft, autonomous robots,” Nature, Vol.536, No.7617, pp. 451-455, 2016.
  86. [86] C. D. Onal, X. Chen, and G. M. Whitesides, “Soft mobile robots with on-board chemical pressure generation,” Proc. 15th Int. Symp. of Robotics Research, pp. 525-540, 2017.
  87. [87] M. Manti, T. Hassan, G. Passetti et al., “A Bioinspired Soft Robotic Gripper for Adaptable and Effective Grasping,” Soft Robotics, Vol.2, No.3, pp. 107-116, 2015.
  88. [88] S. J. Park, M. Gazzola, K. S. Park et al., “Phototactic guidance of a tissue-engineered soft-robotic ray,” Science, Vol.353, No.6295, pp. 158-162, 2016.
  89. [89] M. Rogó, H. Zeng, C. Xuan et al., “Soft Robotics: Light-Driven Soft Robot Mimics Caterpillar Locomotion in Natural Scale,” Advanced Optical Materials, Vol.4, No.11, pp. 1902-1904, 2016.
  90. [90] H. Wang, Y. Yao, X. Wang et al., “Large-Magnitude Transformable Liquid-Metal Composites,” ACS Omega, Vol.4, No.1, pp. 2311-2319, 2019.
  91. [91] Y. Cao, J. Shang, K. Liang et al., “Review of soft-bodied robots,” J. of Mechanical Engineering, Vol.48, No.3, pp. 25-33, 2012.
  92. [92] R. J. Webster and B. A. Jones, “Design and kinematics modeling of constant curvature continuum robots: a review,” Int. J. of Robotics Research, Vol.29, No.13, pp. 1661-1683, 2010.
  93. [93] R. K. Katzschmann, C. D. Santina, Y. Toshimitsu, A. Bicchi, and D. Rus, “Dynamic Motion Control of Multi-Segment Soft Robots Using Piecewise Constant Curvature Matched with an Augmented Rigid Body Model,” Proc. of the 2019 2nd IEEE Int. Conf. on Soft Robotics (RoboSoft), pp. 454-461, 2019.
  94. [94] I. A. Gravagne, C. D. Rahn, and I. D. Walker, “Large de-flection dynamics and control for planar continuum robots,” IEEE/ASME Trans. on Mechatronics, Vol.8, pp. 299-307, 2003.
  95. [95] F. Saunders, B. A. Trimmer, and J. Rife, “Modeling locomotion of a soft-bodied arthropod using inverse dynamics,” Bioinspir. Biomim., Vol.6, No.1, 2011.
  96. [96] D. Rus and M. T. Tolley, “Design, fabrication and control of soft robots,” Nature, Vol.521, No.7553, pp. 467-475, 2015.
  97. [97] B. A. Jones and I. D. Walker, “Kinematics for multisection continuum robots,” IEEE Trans. on Robot, Vol.22, pp. 43-55, 2006.
  98. [98] R. J. Webster and B. A. Jones, “Design and kinematics modeling of constant curvature continuum robots: a review,” Int. J. of Robotics Research, Vol.29, No.14, pp. 1661-1683, 2010.
  99. [99] F. Renda, M. Giorelli, M. Calisti et al., “Dynamic model of a multi-bending soft robot arm driven by cables,” IEEE Trans. on Robot, Vol.30, pp. 1109-1122, 2014.
  100. [100] F. Connolly, P. Polygerinos, C. J. Walsh et al., “Mechanical Programming of Soft Actuators by Varying Fiber Angle,” Soft Robotics, Vol.2, No.1, pp. 26-32, 2015.
  101. [101] E. Yahya, V. Augusto, L. Constantina et al., “Finite Element Analysis and Design Optimization of a Pneumatically Actuating Silicone Module for Robotic Surgery Applications,” Soft Robotics, Vol.1, No.4, pp. 255-262, 2014.
  102. [102] Y. Cao, Y. Liu, Y. Chen et al., “A novel slithering locomotion mechanism for a snake-like soft robot,” J. of the Mechanics and Physics of Solids, Vol.99, pp. 304-320, 2017.
  103. [103] A. D. Marchese, K. Komorowski, C. D. Onal, and D. Rus, “Design and control of a soft and continuously deformable 2D robotic manipulation system,” Proc. IEEE Int. Conf. on Robotics and Automation, pp. 2189-2196, 2014.
  104. [104] F. Xu, H. Wang, J. Wang et al., “Underwater Dynamic Visual Servoing for A Soft Robot Arm with Online Distortion Correction,” IEEE/ASME Trans. on Mechatronics, pp. 1-10, 2019.
  105. [105] R. J. Webster and B. A. Jones, “Design and kinematics modeling of constant curvature continuum robots: a review,” Int. J. of Robotics Research, Vol.29, No.13, pp. 1661-1683, 2010.
  106. [106] Z. Gong, J. Cheng, K. Hu, T. Wang, and L. Wen, “An Inverse Kinematics Method of a Soft Robotic Arm with Threedimensional Locomotion for Underwater Manipulation,” Proc. of the 2018 IEEE Int. Conf. on Soft Robotics (RoboSoft) Livorno, Italy, April 24-28, 2018.
  107. [107] L. Lindenroth, J. Back, A. Schoisengeier et al., “Stiffness-based modeling of a hydraulically-actuated soft robotics manipulator,” Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 2458-2463, 2016.
  108. [108] K. M. de Payrebrune and O. M. O’Reilly, “An experimentally validated rod model for soft continuum robots,” PAMM, Vol.16, No.1, pp. 317-318, 2016.
  109. [109] K. M. de Payrebrune and O. M. O’Reilly, “On constitutive relations for a rod-based model of a pneu-net bending actuator,” Extreme Mechanics Letters, Vol.8, pp. 38-46, 2016.
  110. [110] K. M. de Payrebrune and O. M. O’Reilly, “On the development of rod-based models for pneumatically actuated soft robot arms: A five-parameter constitutive relation,” Int. J. of Solids and Structures, Vol.120, pp. 226-235, 2017.
  111. [111] C. Lisha, Y. Chenghao, W. Hua et al., “Design and modeling of a soft robotic surface with hyperelastic material,” Mechanism and Machine Theory, Vol.130, pp. 109-122, 2018.
  112. [112] G. Jiang, F. Meng, J. Shen, and F. Xu, “Review on kinematics and dynamics modeling for soft robots,” J. of Nanjing University of Posts and Telecommunications (Natural Science Edition), Vol.38, No.1, pp. 20-26, 2018.
  113. [113] Z. Wang and S. Hirai, “Soft Gripper Dynamics Using a Line-Segment Model With an Optimization-Based Parameter Identification Method,” IEEE Robotics and Automation Letters, Vol.2, No.2, pp. 624-631, 2017.
  114. [114] D. Trivedi, A. Lotfi, and C. D. Rahn, “Geometrically exact models for soft robotic manipulators,” IEEE Trans. on Robotics, Vol.24, No.4, pp. 773-780, 2008.
  115. [115] T. Zheng, D. T. Branson, E. Guglielmino et al., “A 3 D dynamic; model for continuum robots inspired by an octopus arm,” Proc. IEEE Int. Conf. on Robotics and Automation, pp. 3652-3657, 2011.
  116. [116] W. S. Rone and P. Ben-Tzvi, “Continuum Robot Dynamics Utilizing the Principle of Virtual Power,” IEEE Trans. on Robotics, Vol.30, No.1, pp. 275-287, 2014.
  117. [117] B. Mazzolai, C. Laschi, M. Cianchetti et al., “Biorobotic investigation on the muscle structure of an octopus tentacle,” Proc. IEEE Int. Conf. on Engineering in Medicine and Biology Society, pp. 1471-1474, 2007.
  118. [118] M. Cianchetti, T. Ranzani, G. Gerboni, T. Nanayakkara, K. Althoefer, P. Dasgupta, and A. Menciassi, “Soft Robotics Technologies to Address Shortcomings in Today’s Minimally Invasive Surgery: The STIFF-FLOP Approach,” Soft Robotics, Vol.1, No.2, pp. 122-130, 2014.
  119. [119] J. R. Woods, S. J. Fusillo, and B. A. Trimmer, “Dynamic properties of a locomotory muscle of the tobacco hornworm Manduca sexta during strain cycling and simulated natural crawling,” J. of Experimental Biology, Vol.211, No.6, pp. 873-882, 2008.
  120. [120] A. D. Marchese and D. Rus, “Design, kinematics, and control of a soft spatial fluidic elastomer manipulator,” Int. J. of Robotics Research, Vol.35, No.7, pp. 840-869, 2015.
  121. [121] F. Renda, M. Ciancftti, M. Giorelli et al., “A 3D steady-state model of a tendon-driven continuum soft manipulator inspired by the octopus arm,” Bioinspiration and Biomimetics, Vol.7, No.2, 025006, 2012.
  122. [122] F. Renda, M. Giorelli, M. Callisti et al., “Dynamic model of a multibending soft robot arm driven by cables,” IEEE Trans. on Robotics, Vol.30, No.5, pp. 1109-1122, 2014.
  123. [123] F. Renda, F. Boyer, J. Dias et al., “Discrete Cosserat approach for multi-section soft robots dynamics: A new piece-wise constant strain model with torsion and shears,” Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pp. 5495-5502, 2016.
  124. [124] H. Wang, B. Yang, Y. Liu et al., “Visual servoing of soft robot manipulator in constrained environments with an adaptive controller,” IEEE/ASME Trans. on Mechatronics, Vol.22, No.1, pp. 41-50, 2017.
  125. [125] M. Zhu, W. Xu, and L. K. Cheng, “Esophageal Peristaltic Control of a Soft-Bodied Swallowing Robot by the Central Pattern Generator,” IEEE/ASME Trans. on Mechatronics, Vol.22, No.1, pp. 91-98, 2017.
  126. [126] Z. Gong, J. Cheng, X. Chen, W. Sun, X. Fang, K. Hu, Z. Xie, T. Wang, and L. Wen, “A Bio-inspired Soft Robotic Arm: Kinematic Modeling and Hydrodynamic Experiments,” J. of Bionic Engineering, Vol.3, pp. 204-219, 2018.
  127. [127] T. G. Thuruthel, E. Falotico, F. Renda et al., “Model-Based Reinforcement Learning for Closed-Loop Dynamic Control of Soft Robotic Manipulators,” IEEE Trans. on Robotics, Vol.35, No.1, pp. 1-11, 2018.
  128. [128] R. Pfeifer, F. Iida, and J. Bongard, “New robotic: Design principles for intelligent systems,” Artificial Life, Vol.11, No.2, pp. 99-120, 2005.
  129. [129] R. Pfeifer, M. Lungarella, and F. Iida, “Self-organization, embodiment, and biologically inspired robotics,” Science, Vol.318, No.5853, 1088, 2007.
  130. [130] M. Cianchetti, M. Calisti, L. Margheri, M. Kuba, and C. Laschi, “Bioinspired locomotion and grasping in water: the soft eight-arm OCTOPUS robot,” Bioinspiration and Biomimetics, Vol.10, No.3, 035003, 2015.
  131. [131] T. Li, K. Nakajima, M. Calisti et al., “Octopus-inspired sensorimotor control of a multi-arm soft robot,” Proc. of IEEE Int. Conf. on Mechatronics and Automation, Chengdu, pp. 948-955, 2012.
  132. [132] J. Kuwabara, K. Nakajima, R. Kang et al., “Timing-based control via echo state network for soft robotic arm,” Proc. of the 2012 Int. Joint Conf. on Neural Networks, Brisbane, pp. 1-8, 2012.
  133. [133] E. Guglielmino, I. Zullo, M. Cianchetti et al., “The application of embodiment theory to the design and control of an octopus like robotic arm,” Proc. of IEEE Int. Conf. on Robotics and Automation, Saint Paul, pp. 5277-5282, 2012.
  134. [134] D. T. Branson, R. Kang, E. Uuglielmono et al., “Control architecture for robots with continuum arms inspired by octopus vulgaris neurophysiology,” Proc. of IEEE Int. Conf. on Robotics and Automation, Saint Paul, pp. 5283-5288, 2012.
  135. [135] X. Zhou, C. Majidi, and O. M. O’Reilly, “Flexing into motion: A locomotion mechanism for soft robots,” Int. J. of Non Linear Mechanics, Vol.74, pp. 1-7, 2015.
  136. [136] A. D. Marchese, K. Komorowski, C. D. Onal et al., “Design and control of a soft and continuously deformable 2D robotic manipulation system,” Proc. of the 2014 IEEE Int. Conf. on Robotics and Automation (ICRA), May 31-June 5, 2014, Hong Kong, China, pp. 2189-2196, 2014.
  137. [137] A. D. Marchese, R. K. Katzschmann, and D. Rus, “Whole arm planning for a soft and highly compliant 2d robotic manipulator,” Proc. of the 2014 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, September 14-18, 2014, Chicago, IL, USA, pp. 554-560, 2014.
  138. [138] R. K. Katzschmann, A. D. Marchese, and D. Rus, “Autonomous object manipulation using a soft planar grasping manipulator,” Soft Robotics, Vol.2, Vol.24, pp. 155-164, 2015.
  139. [139] H. S. Wang, W. D. Chen, R. J. Yu et al., “Visual servo control of cable-driven soft robotic manipulator,” Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Tokyo, Japan, pp. 57-62, 2013.
  140. [140] R. Zhang, H. Wang, and W. Chen, “Shape Control for a Soft Robot Inspired by Octopus,” ROBOT, Vol.38, No.6, pp. 754-759, 2016.
  141. [141] Z. Gong, Z. Xie, X. Yang et al., “Design, fabrication and kinematic modeling of a 3D-motion soft robotic arm,” Proc. of the 2016 IEEE Int. Conf. on Robotics and Biomimetics (ROBIO), pp. 509-514, 2016.
  142. [142] C. Casej, E. L. White, and R. K. Kramer, “Soft material characterization for robotic applications,” Soft Robotics, Vol.2, No.2, pp. 80-87, 2015.
  143. [143] P. Polygerions, K. C. Galloway, E. Savage et al., “Soft robotic glove for hand rehabilitation and task specific training,” IEEE Int. Conf. on Robotics and Automation, May 26-30, 2015, Seattle, WA, Los Alamitos, pp. 2913-2919, 2015.
  144. [144] H. In, B. B. Kang, M. Sin et al., “Exo-Glove: A wearable robot for the hand with a soft tendon routing system,” IEEE Robotics and Automation Magazine, Vol.22, No.1, pp. 97-105, 2015.
  145. [145] L. Paez, G. Agarwal, and J. Paik, “Design and analysis of a soft pneumatic actuator with origami shell reinforcement,” Soft Robotics, Vol.3, No.3, pp. 109-119, 2016.
  146. [146] K. Tanaka, Y. Kamotani, and Y. Yokoohji, “Origami folding by a robotic hand,” IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 2456-2553, 2007.
  147. [147] H. I. Kim, M. W. Han, S. H. Song et al., “Soft morphing hand driven by SMA tendon wire,” Composites Part B: Engineering, Vol.105, pp. 138-148, 2016.
  148. [148] J. Sheng, S. Li, Y. Zhang, and H. Chen, “Study on the nonlinear dynamic behavior of dielectric elastomer actuator,” J. of Dynamics and Control, Vol.15, No.2, pp. 119-124, 2017.
  149. [149] K. J. Cho, J. S. Koh, S. Kim et al., “Review of manufacturing processes for soft biomimetic robots,” Int. J. of Precision Engineering and Manufacturing, Vol.10, No.3, pp. 171-184, 2009.
  150. [150] J. Gafford, Y. Ding, A. Harris et al., “Shape deposition manufacturing of a soft, atraumatic, and deployable surgical grasper,” J. of Mechanisms and Robotics, Vol.7, No.2, 021006, 2015.
  151. [151] R. Mert, F. B. Print, K. Ramaswami et al., “Shape deposition manufacturing,” Engineering Design Research Center, Carnegie Mellon University, 1994.
  152. [152] J. G. Cham, S. A. Bailey, J. E. Clark et al., “Fast and robust: Hexapedal robots via shape deposition manufacturing,” The Int. J. of Robotics Research, Vol.21, No.10, pp. 869-882, 2002.
  153. [153] M. Zhao, B. Chang, Z. Ge, C. Zhu, and J. Wang, “Research progress of software robot manufacturing process,” Micronanoelectronic Technology, Vol.55, No.8, pp. 606-612, 2018.
  154. [154] S. A. Morin, R. F. Shepherd, S. W. Kwok et al., “Camouflage and display for soft machines,” Science, Vol.337, No.6096, pp. 828-832, 2012.
  155. [155] W. K. Sen, A. W. Stephen, M. Bobak et al., “Magnetic Assembly of Soft Robots with Hard Components,” Advanced Functional Materials, Vol.24, No.15, pp. 2180-2187, 2014.
  156. [156] A. Jusufi, D. M. Vogt, R. J. Wood et al., “Undulatory Swimming Performance and Body Stiffness Modulation in a Soft Robotic Fish-Inspired Physical Model,” Soft Robot, pp. 202-210, 2017.
  157. [157] R. K. Katzschmann, A. D. Marchese, and D. Rus, “Hydraulic autonomous soft robotic fish for 3D swimming,” Experimental Robotics, pp. 405-420, 2016.
  158. [158] A. D. Marchese, R. K. Katzschmann, and D. Rus, “A recipe for soft fluidic elastomer robots,” Soft Robotics, Vol.2, No.1, pp. 7-25, 2015.
  159. [159] B. S. Homberg, R. K. Katzschmann, M. R. Dogar et al., “Haptic identification of objects using a modular soft robotic (IROS), gripper,” Proc. of the 2015 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 1698-1705, 2015.
  160. [160] N. W. Bartlett, M. T. Tolley, J. T. B. Overvelde et al., “A 3D-printed, functionally graded soft robot powered by combustion,” Science, Vol.349, No.6244, pp. 161-165, 2015.
  161. [161] T. Umedachi and B. A. Trimmer, “Design of a 3D-printed soft robot with posture and steering control,” Proc. of the 2014 IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 2874-2879, 2014.
  162. [162] T. Umedachi, V. Vikas, and B. A. Trimmer, “Highly deformable 3-d printed soft robot generating inching and crawling locomotions with variable friction legs,” Proc. of the 2013 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pp. 4590-4595, 2013.
  163. [163] N. W. Bartlett, M. T. Tolley, J. T. B. Overvelde et al., “A 3D-printed functionally graded soft robot powered by combustion,” Science, Vol.349, No.6244, pp. 161-165, 2015.
  164. [164] R. Maccurdy, R. Katzschmann, Y. Him et al., “Printable hydraulics: A method for fabricating robots by 3D co-printing solids and liquids,” Proc. of the 2016 IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 3878-3885, 2016.
  165. [165] M. Wehner, R. L. Truby, D. J. Fitzgerald et al., “An integrated design and fabrication strategy for entirely soft, autonomous robots,” Nature, Vol.536, No.7617, pp. 451-455, 2016.
  166. [166] R. B. N. Scharff, E. L. Doubrovski, W. A. Poeiman et al., “Towards behavior design of a 3D-printed soft robotic hand,” Soft Robotics: Trends, Applications and Challenges, Vol.17, pp. 23-29, 2017.
  167. [167] K. J. Cho, J. S. Koh, S. Kim et al., “Review of manufacturing processes for soft biomimetic robots,” Int. J. of Precision Engineering and Manufacturing, Vol.10, No.3, pp. 171-181, 2009.
  168. [168] R. J. Wood, “The first take-off of a biologically inspired at-scale robotic insect,” IEEE Trans. on Robotics, Vol.24, No.2, pp. 341-347, 2008.
  169. [169] J. S. Koh and K. J. Cho, “Omegabot: biomimetic inchworm robot using SMA coil actuator and smart composite microstructures (SCM),” Proc. of the IEEE Int. Conf. on Robotics and Biomimetics. Guilin, China, pp. 1154-1159, 2009.
  170. [170] Y. Bar-Cohen, “Electroactive polymer (EAP) actuators as artificial muscles reality, potential, and challenges,” 2nd ed., SPIE Press, 2004.
  171. [171] P. Lotz, M. Matysek, and H. F. Schlaak, “Fabrication and application of miniaturized dielectric elastomer stack actuators,” IEEE/ASME Trans. on Mechatronics, Vol.16, No.1, pp. 58-66, 2011.
  172. [172] Z. Zou, T. Li, S. Qu et al., “Active shape control and phase coexistence of dielectric elastomer membrane with patterned electrodes,” J. of Applied Mechanics, Vol.81, No.3, 031016, 2014.
  173. [173] S. Rosset and H. R. Shea, “Flexible and stretchable electrodes for dielectric elastomer actuators,” Applied Physics A, Vol.110, No.2, pp. 281-307, 2013.
  174. [174] C. Keplinger, J. Y. Sun, C. C. Foo et al., “Stretchable, Transparent Ionic Conductors,” Science, Vol.341, No.6149, pp. 984-987, 2013.
  175. [175] J. Rossiter, P. Walters, and B. Stoimenov, “Printing 3D dielectric elastomer actuators for soft robotics,” Proc. Int. Symp. on Smart Structures and Materials and Nondestructive Evaluation and Health Monitoring, 2009.
  176. [176] J. D. Carrico, N. W. Traeden, M. Aureli et al., “Fused Filament Additive Manufacturing of Ionic Polymer-Metal Composite Soft Active 3D Structures,” Proc. ASME Conf. on Smart Materials, 2015.
  177. [177] B. N. Peele, T. J. Wallin, H. Zhao et al., “3D printing antagonistic systems of artificial muscle using projection stereolithography,” Bioinspiration and Biomimetics, Vol.10, No.5, 055003, 2015.
  178. [178] M. Leester-Schdel, B. Hoxhold, C. Lesche et al., “Micro actuators on the basis of thin SMA foils,” Microsystem Technologies, Vol.14, No.4, pp. 697-704, 2008.
  179. [179] D. Niu, W. Jiang, G. Ye, B. Lei, F. Luo, H. Liu, and B. Lu, “Photothermally triggered soft robot with adaptive local deformations and versatile bending modes,” Smart Materials and Structures, Vol.28, pp. 1-12, 2019.
  180. [180] S. P. Lacour, J. Jones, S. Wagner et al., “Stretchable Interconnects for Elastic Electronic Surfaces,” Proc. of the IEEE, Vol.93, No.8, pp. 1459-1467, 2005.
  181. [181] D. Y. K. Hang, H. Jiang, Y. Huang et al., “Silicon does the wave,” Science, Vol.311, No.13, pp. 141-142, 2006.
  182. [182] D. H. Kim and J. A. Rogers, “Stretchable Electronics: Materials Strategies and Devices,” Advanced Materials, Vol.20, No.24, pp. 4887-4892, 2008.
  183. [183] A. A. Calderón, J. C. Ugalde et al., “An earthworm-inspired soft robot with perceptive artificial skin,” Bioinspiration and Biomimetics, Vol.14, No.5, 056012, 2019.
  184. [184] T. Someya, Y. Kato, T. Sekitani et al., “Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes,” Proc. of the National Academy of Sciences of the United States of America, Vol.102, No.35, pp. 12321-12325, 2005.
  185. [185] E. Brown, N. Rodenberu, J. Amend et al., “Universal robotic gripper based on the jamming of granular material,” Proc. of the National Academy of Sciences, Vol.107, No.104, pp. 18809-18814, 2010.
  186. [186] Y. F. Hao, Z. Y. Gong, Z. X. Xie et al., “Universal soft pneumatic robotic gripper with variable effective length,” Proc. 35th Chinese Control Conf. (CCC), pp. 6109-6144, 2016.
  187. [187] J. Frame, N. Lopez, O. Curet, and E. D. Engeberg, “Thrust force characterization of free-swimming soft robotic jellyfish,” Bioinspiration and Biomimetics, Vol.13, pp. 64-71, 2018.
  188. [188] R. K. Katzschmann, J. DelPreto, R. MacCurdy, and D. Rus, “Exploration of underwater life with an acoustically controlled soft robotic fish,” Science Robotics, Vol.3, Issue 16, eaar3449, doi: 10.1126/scirobotics.aar3449, 2018.
  189. [189] M. N. Ribuan, S. Wakimoto, K. Suzumori et al., “Omnidirectional Soft Robot Platform with Flexible Actuators for Medical Assistive Device,” J. Robot. Mechatron., Vol.10, No.4, pp. 494-502, 2016.
  190. [190] K. Xu and N. Simaan, “An Investigation of the Intrinsic Force Sensing Capabilities of Continuum Robots,” IEEE Trans. on Robotics, Vol.24, No.3, pp. 576-587, 2008.
  191. [191] P. Polygerinos, Z. Wang, K. Galloway et al., “Soft robotic glove for combined assistance and at-home rehabilitation,” Robotics and Autonomous Systems, Vol.73, No.3, pp. 135-143, 2015.
  192. [192] H. Dong, M. Lin, S. Gu, Y. Cao, and W. Li, “The Research on the motion characteristics of Soft bionic tongue Based on Multi-directional Pneumatic Actuator,” J. of Beijing University of Aeronautics and Astronautics, Vol.45, No.9, pp. 1882-1893, 2019.
  193. [193] E. W. Hawkes, L. H. Blumenschein, J. D. Greer et al., “A soft robot that navigates its environment through growth,” Science Robotics, Vol.2, Issue 8, eaan3028, 2017.
  194. [194] Y. Wang, X. Yang, Y. Chen et al., “A biorobotic adhesive disc for underwater hitchhiking inspired by the remora suckerfish,” Science Robotics, Vol.2, Issue 10, eaan8072, 2017.
  195. [195] S. A. Morin, S. W. Kwok, J. Lessing et al., “Elastomeric tiles for the fabrication of inflatable structures,” Advanced Functional Materials, Vol.24, No.35, pp. 5541-5549, 2014.
  196. [196] Y. Yang, Y. Chen, Y. Wei et al., “Novel design and three-dimensional printing of variable stiffness robotic grippers,” J. of Mechanisms and Robotics, Vol.8, No.6, pp. 61010-61025, 2016.
  197. [197] Q. Li, C. Liu, Y.-H. Lin et al., “Large-strain, multiform movements from designable electrothermal actuators based on large highly anisotropic carbon nanotube sheets,” ACS Nano, Vol.9, No.1, pp. 409-418, 2015.
  198. [198] M. Rajagopalan and I. K. Oh, “Fullerenol-based electroactive artificial muscles utilizing biocompatible polyether-imide,” ACS Nano, Vol.5, No.3, pp. 2248-2256, 2011.
  199. [199] J. Hasan, R. J. Crawford, and E. P. lvanova, “Antibacterial surfaces the quest for a new generation of biomaterials,” Trends in Biotechnology, Vol.31, No.5, pp. 295-304, 2013.
  200. [200] J. Lee, D. Bhattacharyya, M. Q. Zhang et al., “Mechanical properties of a self-healing fibre reinforced epoxy composites,” Composites Part B: Engineering, Vol.78, pp. 515-519, 2015.
  201. [201] W. Zhao, A. Ming, M. Shimojo et al., “Fluid-structure Interaction Analysis of a Soft Robotic Fish Using Piezoelectric Fiber Composite,” J. Robot. Mechatron., Vol.25, No.5, pp. 638-648, 2014.
  202. [202] Z. Wang, P. Polygerinos, J. T. B. Overvelde et al., “Interaction Forces of Soft Fiber Reinforced Bending Actuators,” IEEE J. and Magazines, Vol.22, No.5, pp. 717-727, 2017.
  203. [203] K. M. de Payrebrune and O. M. O’Reilly, “On constitutive relations for a rod-based model of a pneu-net bending actuator,” Extreme Mechanics Letters, S2352431615300122, 2016.
  204. [204] G. Palli and C. Melchiorri, “Friction compensation techniques for tendon-driven robotic hands,” Mechatronics, Vol.24, No.2, pp. 108-117, 2014.
  205. [205] E. L. White, J. C. Case, and R. K. Kramer, “Multimode strain and curvature sensors for soft robotic applications,” Sensors and Actuators A: Physical, Vol.253, pp. 188-197, 2017.
  206. [206] H. Yousef, M. Boukallel, and K. Althoefer, “Tactile sensing for dexterous in-hand manipulation in robotics – A review,” Sensors and Actuators A: Physical, Vol.167, No.2, pp. 171-187, 2011.
  207. [207] C.-H. Chen and N. D. Subbaram, “Hybrid control strategies for a five-finger robotic hand,” Biomedical Signal Processing and Control, Vol.8, No.4, pp. 382-390, 2013.
  208. [208] R. K. Jain and S. Datta, “Majumder Design and control of an IPMC artificial muscle finger for micro grippes using EMC signal,” Mechatronics, Vol.23, No.3, pp. 381-394, 2013.
  209. [209] G. Bao, K. Li, S. Xu et al., “Motion identification based on sEMG for flexible pneumatic hand rehabilitator,” Industrial Robot: An Int. J., Vol.42, No.1, pp. 25-35, 2015.
  210. [210] T. Yoshikawa, “Multifingered robot hands: Control for grasping and manipulation,” Annual Reviews in Control, Vol.34, No.2, pp. 199-208, 2010.
  211. [211] M. F. Reis, A. C. Leite, P. J. From et al., “Visual servoing for object manipulation with a multifingered robot hand,” IFAC-PapersOnLine, Vol.48, No.19, pp. 1-6, 2015.
  212. [212] N. Bezzo, A. Mehta, C. D. Onal et al., “Robot makers: The future of digital rapid design and fabrication of robots,” Robotics and Automation Magazine, Vol.22, No.4, pp. 27-36, 2015.
  213. [213] A. Zolfagharian, A. Z. Kouzani, S. Y. Khoo et al., “Evolution of 3D printed soft actuators,” Sensors and Actuators A: Physical, Vol.250, pp. 258-272, 2016.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jul. 20, 2021