JRM Vol.36 No.3 pp. 546-554
doi: 10.20965/jrm.2024.p0546


Designing Decentralized Systems with High Survivability Inspired by Altruistic Social Interactions of Vampire Bats

Takeshi Kano* ORCID Icon, Shokichi Kawamura*,**, Taishi Mikami*,**, Daiki Wakita* ORCID Icon, and Akio Ishiguro* ORCID Icon

*Research Institute of Electrical Communication, Tohoku University
2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan

**Graduate School of Engineering, Tohoku University
6-6 Aramaki Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan

November 21, 2023
January 31, 2024
June 20, 2024
decentralized system, vampire bat, altruistic behavior, survivability

Altruism is a key concept in the design of decentralized systems with high survivability. We focus on a community of vampire bats to reveal how intra-group altruism produces group-wide survivability. Although these bats die within three days if food is unavailable, they can survive for over 10 years by developing a highly sophisticated social community in which they share food. This food-sharing behavior occurs not only among blood relatives, but also among unrelated individuals through self-organizing social relationships based on grooming behavior. We propose a simple network model that focuses on the relationship between food sharing and grooming. We performed simulations under periodic, stationary, and irregular feeding environments, and found that suitable update rules for social relationships depend on the type of environment. Our findings provide insights into how decentralized systems with high survivability can be designed based on altruism.

Community formation mechanism of vampire bats

Community formation mechanism of vampire bats

Cite this article as:
T. Kano, S. Kawamura, T. Mikami, D. Wakita, and A. Ishiguro, “Designing Decentralized Systems with High Survivability Inspired by Altruistic Social Interactions of Vampire Bats,” J. Robot. Mechatron., Vol.36 No.3, pp. 546-554, 2024.
Data files:
  1. [1] Y. Hayakawa, “Spatiotemporal Dynamics of Skeins of Wild Geese,” Europhys. Lett., Vol.89, No.4, Article No.48004, 2010.
  2. [2] O. Yamanaka, Y. Oki, Y. Imamura, Y. Tamura, M. Shiraishi, S. Izumi, A. Awazu, and N. Nishimori, “Ants Alter Collective Behavior After Feeding and Generate Shortcut Paths on a Two-Dimensional Foraging Area,” Front. Phys., Vol.10, Article No.896717, 2022.
  3. [3] T. Mikami, D. Wakita, R. Kobayashi, A. Ishiguro, and T. Kano, “Elongating, Entwining, and Dragging: Mechanism for Adaptive Locomotion of Tubificine Worm Blobs in a Confined Environment,” Front. Neurorobot., Vol.17, Article No.1207374, 2023.
  4. [4] O. Shishkov and O. Peleg, “Social Insects and Beyond: The Physics of Soft, Dense Invertebrate Aggregations,” Collectiv. Intell., Vol.1, No.2, 2022.
  5. [5] H. Hamann, “Swarm Robotics: A Formal Approach,” Springer, 2018.
  6. [6] Y. Sueoka, M. Okada, Y. Tsunoda, Y. Sugimoto, and K. Osuka, “Exploration of a Simple Navigation Method for Swarm Robots Pioneered by Heterogeneity,” J. Robot. Mechatron., Vol.35, No.4, pp. 948-956, 2023.
  7. [7] C. H. Lo and N. Ansari, “Decentralized Controls and Communications for Autonomous Distribution Networks in Smart Grid,” IEEE Trans. Smart Grid, Vol.4, No.1, pp. 66-77, 2013.
  8. [8] T. Kano, E. Sato, T. Ono, H. Aonuma, Y. Matsuzaka, and A. Ishiguro, “A Brittle Star-like Robot Capable of Immediately Adapting to Unexpected Physical Damage,” R. Soc. Open Sci., Vol.4, No.12, Article No.171200, 2017.
  9. [9] T. Kano, R. Yoshizawa, and A. Ishiguro, “Tegotae-based Decentralised Control Scheme for Autonomous Gait Transition of Snake-like Robots,” Bionspir. Biomim., Vol.12, No.4, Article No.046009, 2017.
  10. [10] T. Kano, Y. Sugiyama, and A. Ishiguro, “Autonomous Decentralized Control of Traffic Signals That Can Adapt to Changes in Traffic,” Collective Dynamics, Vol.1, pp. 1-18, 2016.
  11. [11] T. Kano, M. Iwamoto, and D. Ueyama, “Decentralised Control of Multiple Mobile Agents for Quick, Smooth, and Safe Movement,” Physica A, Vol.572, Article No.125898, 2021.
  12. [12] T. Mikami, M. Asally, T. Kano, and A. Ishiguro, “One-dimensional Reaction-diffusion Model for Intra- and Inter-Biofilm Oscillatory Dynamics,” Proc. of 2020 Conf. on Artificial Life (ALIFE), pp. 712-714, 2020.
  13. [13] T. Kano, M. Asally, and A. Ishiguro, “Decentralized Control Scheme for Swarm Robots with Self-Sacrifice,” Proc. of 2018 Conf. on Artificial Life (ALIFE), pp. 544-545, 2018.
  14. [14] A. M. Greenhall, “Natural History of Vampire Bats,” CRC Press, 2018.
  15. [15] G. S. Wilkinson, “Reciprocal food sharing in the vampire bat,” Nature, Vol.308, pp. 181-184, 1984.
  16. [16] G. S. Wilkinson, “Social grooming in the common vampire bat, ıt Desmodus rotundus,” Anim. Behav., Vol.34, No.6, pp. 1880-1889, 1986.
  17. [17] G. G. Carter, D. R. Farine, R. J. Crisp, J. K. Vrtilek, S. P. Ripperger, and R. A Page, “Development of new food-sharing relationships in vampire bats,” Curr. Biol., Vol.30, No.7, pp. 1275-1279, 2020.
  18. [18] G. G. Carter and G. S. Wilkinson, “Social benefits of non-kin food sharing by female vampire bats,” Proc. R. Soc. B Biol. Sci., Vol.282, No.1819, Article No.20152524, 2015.
  19. [19] G. G. Carter, D. R. Farine, and G. S. Wilkinson, “Social bet-hedging in vampire bats,” Biol. Lett., Vol.13, No.5, Article No.20170112, 2017.
  20. [20] M. Kubo, H. Sato, T. Matsubara, and C. Melhuish, “High survivability of a large colony through a small-world relationship,” Artif. Life Robot., Vol.14, No.2, pp. 168-173, 2009.
  21. [21] M. Kubo, H. Sato, T. Matsubara, and C. Melhuish, “Effect of network structure on the vampire bat energy sharing model,” SCIS & ISIS 2008, pp. 1876-1881, 2008.
  22. [22] M. Witkowski, “Energy sharing for swarms modeled on the common vampire bat,” Adapt. Behav., Vol.15, No.3, pp. 307-328, 2007.
  23. [23] G. Di Tosto, M. Paolucci, and R. Conte, “Altruism among simple and smart vampires,” Int. J. Coop. Inf. Syst., Vol.16, No.01, pp. 51-66, 2007.
  24. [24] M. Paolucci, R. Conte, and G. Di Tosto, “A model of social organization and the evolution of food sharing in vampire bats,” Adapt. Behav., Vol.14, No.3, pp. 223-238, 2006.
  25. [25] T. Mikami, T. Kano, and A. Ishiguro, “An agent-based model for community formation process of vampire bats that survive by sharing food,” Artif. Life Robot., Vol.25, No.4, pp. 561-568, 2020.
  26. [26] G. G. Carter and G. S. Wilkinson, “Food sharing in vampire bats: reciprocal help predicts donations more than relatedness or harassment,” Proc. Biol. Sci., Vol.280, No.1753, Article No.20122573, 2013.
  27. [27] D. P. Croft, R. James, P. O. R. Thomas, C. Hathaway, D. Mawdsley, K. N. Laland, and J. Krause, “Social structure and co-operative interactions in a wild population of guppies (Poecilia reticulata),” Behav. Ecol. Sociobiol., Vol.59, No.5, pp. 644-650, 2006.
  28. [28] L. A. Dugatkin and M. Alfieri, “Guppies and the tit for tat strategy: Preference based on past interaction,” Behav. Ecol. Sociobiol., Vol.28, No.4, pp. 243-246, 1991.
  29. [29] T. Okuyama, S. Yokoi, H. Abe, Y. Isoe, Y. Suehiro, H. Imada, M. Tanaka, T. Kawasaki, S. Yuba, Y. Taniguchi et al., “A neural mechanism underlying mating preferences for familiar individuals in medaka fish,” Science, Vol.343, No.6166, pp. 91-94, 2014.
  30. [30] M. Daimon, T. Katsumura, H. Sakamoto et al., “Mating experiences with the same partner enhanced mating activities of naïve male medaka fish,” Sci. Rep., Vol.12, Article No.19665, 2022.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jul. 12, 2024