single-rb.php

JRM Vol.36 No.3 pp. 568-579
doi: 10.20965/jrm.2024.p0568
(2024)

Paper:

Exploration of Space Under Debris Using Primitive Mobility Algorithms

Nelson Andrés Sánchez Otálora ORCID Icon and Naoki Wakamiya ORCID Icon

Graduate School of Information Science and Technology, Osaka University
1-5 Yamadaoka, Suita, Osaka 565-0871, Japan

Received:
November 23, 2023
Accepted:
February 29, 2024
Published:
June 20, 2024
Keywords:
exploration, mobile robots, search and rescue activities
Abstract

In search and rescue operations, the primary, urgent, and critical task is to locate people trapped under debris in collapsed buildings. Mobile robots are expected to facilitate the acquisition of information about a disaster site and the detection of victims. In this paper, we investigate the strategy for exploring the space under debris using multiple mobile robots. To establish a baseline, we first evaluate the performance of simple and primitive mobility algorithms, such as random walk and depth-first search, across various scenarios with different debris densities. We then consider combinations of these primitive algorithms, which allow mobile robots to adapt to the local surrounding conditions. Through simulation evaluation, we find that a stochastic algorithm contributes to fast exploration by multiple mobile robots, regardless of debris density, while a deterministic algorithm is effective when used by a single agent.

Cell map generated by agent in simulation

Cell map generated by agent in simulation

Cite this article as:
N. Otálora and N. Wakamiya, “Exploration of Space Under Debris Using Primitive Mobility Algorithms,” J. Robot. Mechatron., Vol.36 No.3, pp. 568-579, 2024.
Data files:
References
  1. [1] F. Li, S. Hou, C. Bu, and B. Qu, “Rescue Robots for the Urban Earthquake Environment,” Disaster Medicine and Public Health Preparedness, Vol.17, Article No.e181, 2023. https://doi.org/10.1017/dmp.2022.98
  2. [2] A. Krasner, M. Sizintsev, A. Rajvanshi, H. Chiu, N. Mithun, K. Kaighn, P. Miller, and R. Villamil, and S. Samarasekera, “SIGNAV: Semantically-Informed GPS-Denied Navigation and Mapping in Visually-Degraded Environments,” 2022 IEEE/CVF Winter Conf. on Applications of Computer Vision, pp. 1858-1867, 2022. https://doi.org/10.1109/WACV51458.2022.00192
  3. [3] D. Zou, P. Tan, and W. Yu, “Collaborative Visual SLAM for Multiple Agents: A Brief Survey,” Virtual Reality and Intelligent Hardware, Vol.1, Issue 5, pp. 461-482, 2019. https://doi.org/10.1016/j.vrih.2019.09.002
  4. [4] C. Fischer and H. Gellersen, “Location and Navigation Support for Emergency Responders: A Survey,” IEEE Pervasive Computing, Vol.9, No.1, pp. 38-47, 2010. https://doi.org/10.1109/MPRV.2009.91
  5. [5] L. Battistuzzi, C. T. Recchiuto, and A. Sgorbissa, “Ethical Concerns in Rescue Robotics: A Scoping Review,” Ethics in Information Technology, Vol.23, No.3, pp. 863-875, 2021. https://doi.org/10.1007/s10676-021-09603-0
  6. [6] J. Delmerico, S. Mintchev, A. Giusti, B. Gromov, K. Melo, T. Horvat, C. Cadena, M. Hutter, A. Ijspeert, D. Floreano, L. M. Gambardella, R. Siegwart, and D. Scaramuzza, “The Current State and Future Outlook of Rescue Robotics,” J. Field Robotics, Vol.36, pp. 1171-1191, 2019. https://doi.org/10.1002/rob.21887
  7. [7] A. Joret, S. Ahmed, N. Katiran, and M. S. Sulong, “Human Detection Techniques for Search and Rescue of Trapped Victims Under Debris: A Review,” Evolution of Information, Communication and Computing Systems, Vol.3, No.1, pp. 54-65, 2022.
  8. [8] F. Matsuno, T. Kamegawa, W. Qi, T. Takemori, M. Tanaka, M. Nakajima, K. Tadakuma, M. Fujita, Y. Suzuki, K. Itoyama, H. G. Okuno, Y. Bando, T. Fujiwara, and S. Tadokoro, “Development of Tough Snake Robot Systems,” S. Tadokoro (Ed.), “Disaster Robotics,” Springer Tracts in Advanced Robotics, Vol.128, pp. 267-326, 2019. https://doi.org/10.1007/978-3-030-05321-5_6
  9. [9] M. J. Koopaee, S. Bal, C. Pretty, and X. Chen, “Design and Development of a Wheel-Less Snake Robot with Active Stiffness Control for Adaptive Pedal Wave Locomotion,” J. of Bionic Engineering, Vol.16, No.4, pp. 593-607, 2019. https://doi.org/10.1007/s42235-019-0048-x
  10. [10] P. Racioppo and P. Ben-Tzvi, “Design and Control of a Cable-Driven Articulated Modular Snake Robot,” IEEE/ASME Trans. Mechatronics, Vol.24, No.3, pp. 893-901, 2019. https://doi.org/10.1109/TMECH.2019.2906298
  11. [11] P. Liljebäck, K. Y. Pettersen, Ø. Stavdahl, and J, T. Gravdahl, “Snake Robots – Modelling, Mechatronics, and Control,” Springer London, 2013. https://doi.org/10.1007/978-1-4471-2996-7
  12. [12] P. Quin, G. Paul, A. Alempijevic, and D. Liu, “Exploring in 3D With a Climbing Robot: Selecting the Next Best Base Position on Arbitrarily-Oriented Surfaces,” 2016 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 5770-5775, 2016. https://doi.org/10.1109/IROS.2016.7759849
  13. [13] H. Osumi, “Application of Robot Technologies to the Disaster Sites,” Report of JSME Research Committee on the Great East Japan Earthquake Disaster, pp. 58-74, 2014.
  14. [14] K. K. A. Farag, H. H. Shehata, and H. M. El-Batsh, “Mobile Robot Obstacle Avoidance Based on Neural Network with a Standardization Technique,” J. of Robotics, Vol.2021, Article No.1129872, 2021. https://doi.org/10.1155/2021/1129872
  15. [15] R. Ueda, L. Tonouchi, T. Ikebe, and Y. Hayashibara, “Implementation of Brute-Force Value Iteration for Mobile Robot Path Planning and Obstacle Bypassing,” J. Robot. Mechatron., Vol.35, No.6, pp. 1489-1502, 2023. https://doi.org/10.20965/jrm.2023.p1489
  16. [16] B. Pang, Y. Song, C. Zhang, H. Wang, and R. Yang, “A Swarm Robotic Exploration Strategy Based on an Improved Random Walk Method,” J. of Robotics, Vol.2019, Article No.6914212, 2019. https://doi.org/10.1155/2019/6914212
  17. [17] D. S. Drew, “Multi-Agent Systems for Search and Rescue Applications,” Current Robotics Reports, Vol.2, pp. 189-200, 2021. https://doi.org/10.1007/s43154-021-00048-3
  18. [18] J. P. Queralta, J. Taipalmaa, B. C. Pullinen, V. K. Sarker, T. Nguyen Gia, H. Tenhunen, M. Gabbouj, J. Raitoharju, and T. Westerlund, “Collaborative Multi-Robot Search and Rescue: Planning, Coordination, Perception, and Active Vision,” IEEE Access, Vol.8, pp. 191617-191643, 2020. https://doi.org/10.1109/ACCESS.2020.3030190
  19. [19] E. T. Alotaibi, S. S. Alqefari, and A. Koubaa, “LSAR: Multi-UAV Collaboration for Search and Rescue Missions,” IEEE Access, Vol.7, pp. 55817-55832, 2019. https://doi.org/10.1109/ACCESS.2019.2912306
  20. [20] J. D. Hoog, S. Cameron, and A. Visser, “Autonomous Multi-Robot Exploration in Communication-Limited Environments,” Proc. of the IEEE Int. Conf. on Robotics and Automation, pp. 123-130, 2010.
  21. [21] J. de Hoog, S. Cameron, and A. Visser, “Autonomous Multi-Robot Exploration in Communication-Limited Environments,” Proc. of the 11th Conf. Towards Autonomous Robotic Systems, pp. 68-75, 2010.
  22. [22] M. Apte, Y. Agarwadkar, S. Azmi, and A. B. Inamdar, “Understanding Grids and Effectiveness of Hexagonal Grid in Spatial Domain,” Int. Conf. in Recent Trends in Information Technology and Computer Science (ICRTITCS-2012), pp. 25-27, 2012.
  23. [23] H. Ryu and W. K. Chung, “Local Map-Based Exploration Using a Breadth-First Search Algorithm for Mobile Robots,” Int. J. of Precision Engineering and Manufacturing, Vol.16, No.10, pp. 2073-2080, 2015. https://doi.org/10.1007/s12541-015-0269-9
  24. [24] S. C. Nagavarapu, L. Vachhani, and A. Sinha, “Multi-Robot Graph Exploration and Map Building With Collision Avoidance: A Decentralized Approach,” J. of Intelligent and Robotic Systems, Vol.83, No.3, pp. 503-523, 2016. https://doi.org/10.1007/s10846-015-0309-9
  25. [25] N. Sanchez, “Investigation of Fundamental Algorithms for Cooperative Exploration of Mobile Agents in Search and Rescue Scenarios,” Proc. of 4th IEEE Int. Conf. on Autonomic Computing and Self-Organizing Systems (ACSOS 2023), pp. 14-15, 2023. https://doi.ieeecomputersociety.org/10.1109/ACSOS-C58168.2023.00024

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jul. 12, 2024