single-rb.php

JRM Vol.37 No.1 pp. 135-142
doi: 10.20965/jrm.2025.p0135
(2025)

Paper:

Driving Conditions for Miniaturization of Micro Flow Control Valves Using Particle Excitation

Daisuke Hirooka ORCID Icon, Naomichi Furushiro ORCID Icon, and Tomomi Yamaguchi

Department of Mechanical Engineering, Kansai University
3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan

Received:
August 2, 2024
Accepted:
October 30, 2024
Published:
February 20, 2025
Keywords:
pneumatic control, micro flow control, small-sized servo valve, PZT, vibration mode
Abstract

In this study, we introduce research aimed at developing a compact particle-excitation flow control valve that enables continuous control of air flow rate. We have been developing a compact control valve with continuous flow control for application to soft actuators. The control valve that we are developing uses particles as a valve plug, which does not require a valve plug positioning function and allows the control valve to be miniaturized. Furthermore, by controlling the movements of the particles on the orifice, the control flow rate can be made finer and the response can be improved. On the other hand, the past driving principle used the resonant mode of an oscillator utilizing a piezoelectric element (PZT) to control the motion of the particles. In this vibration mode, the size of the oscillator limits the miniaturization. Therefore, we propose a drive method that uses simple plate deflection vibration mode. This drive method eliminates the need for a large oscillator, and thus reduces the size of the control valve. To confirm the feasibility of the proposed drive method, we fabricated a prototype and evaluated its characteristics during flow control.

Image of simple plate deflection vibration mode

Image of simple plate deflection vibration mode

Cite this article as:
D. Hirooka, N. Furushiro, and T. Yamaguchi, “Driving Conditions for Miniaturization of Micro Flow Control Valves Using Particle Excitation,” J. Robot. Mechatron., Vol.37 No.1, pp. 135-142, 2025.
Data files:
References
  1. [1] K. Suzumori, “New robotics pioneered by fluid power,” J. Robot. Mechatron., Vol.32, No.5, pp. 854-862, 2020. https://doi.org/10.20965/jrm.2020.p0854
  2. [2] T. Nakamura, “Fluid-driven soft actuators for soft robots,” J. Robot. Mechatron., Vol.36, No.2, pp. 251-259, 2024. https://doi.org/10.20965/jrm.2024.p0251
  3. [3] S. C. Mawah and Y. J. Park, “Tendon-driven variable-stiffness pneumatic soft gripper robot,” Robotics, Vol.12, Issue 5, Article No.128, 2023. https://doi.org/10.3390/robotics12050128
  4. [4] K. Nishikawa, K. Hirata, and M. Takaiwa, “Development of pneumatically driven hand capable of grasping flexible objects,” J. Robot. Mechatron., Vol.32, No.5, pp. 923-930, 2020. https://doi.org/10.20965/jrm.2020.p0923
  5. [5] S. Koizumi, T.-H. Chang, H. Nabae, G. Endo, K. Suzumori, M. Mita, K. Saitoh, K. Hatakeyama, S. Chida, and Y. Shimada, “Soft robotic gloves with thin McKibben muscles for hand assist and rehabilitation,” Proc. of the 2020 IEEE/SICE Int. Symp. on System Integration, 2020. https://doi.org/10.1109/SII46433.2020.9025832
  6. [6] S. Shimooka, R. Suzuki, T. Uehara, T. Hirayama, and A. Gofuku, “Development of ankle-joint rehabilitation device for bedridden patient using fan-shaped pneumatic soft actuator driven at low pressure,” J. Robot. Mechatron., Vol.34, No.2, pp. 565-576, 2023. https://doi.org/10.20965/jrm.2023.p0565
  7. [7] K. Nishikawa, K. Hirata, and M. Takaiwa, “Development of self-powered 5-finger pneumatically driven hand prosthesis using supination of forearm,” J. Robot. Mechatron., Vol.34, No.2, pp. 454-465, 2022. https://doi.org/10.20965/jrm.2022.p0454
  8. [8] S. Hirai and K. Kato, “Micro pneumatic valves for wearable robotic systems,” 24th IEEE Int. Symp. on Robot and Human Interactive Communication, pp. 652-657, 2015. https://doi.org/10.1109/ROMAN.2015.7333584
  9. [9] T. Kobayashi, T. Akagi, S. Dohta, F. Cho, T. Shinohara, and M. Yokota, “Slide-gate type multi-port switching valve,” J. Robot. Mechatron., Vol.35, No.3, pp. 633-640, 2023. https://doi.org/10.20965/jrm.2023.p0633
  10. [10] T. Kanno, T. Hasegawa, T. Miyazaki, N. Yamamoto, D. Haraguchi, and K. Kawashima, “Development of a poppet-type pneumatic servo valve,” Appl. Sci., Vol.8, Issue 11, Article No.2094, 2018. https://doi.org/10.3390/app8112094
  11. [11] K. Tadano, Y. Ishida, and H. Takeishi, “Development of a four-way pinch-type servo valve for pneumatic actuator,” Applied Sciences, Vol.10, Issue 3, Article No.1066, 2020. https://doi.org/10.3390/app10031066
  12. [12] S. Dohta, T. Akagi, W. Kobayashi, S. Shimooka, and Y. Masago, “Improvement of a pneumatic control valve with self-holding function,” Materials Science and Engineering, Vol.249, Article No.012002, 2017. https://doi.org/10.1088/1757-899X/249/1/012002
  13. [13] P. Rothemund, A. Ainla, L. Belding, D. J. Preston, S. Kurihara, Z. Suo, and G. M. Whitesides, “A soft, bistable valve for autonomous control of soft actuators,” Science Robotics, Vol.3, No.16, Article No.eaar7986, 2018. https://doi.org/10.1126/scirobotics.aar7986
  14. [14] F. Zhao, S. Dohta, and T. Akagi, “Development and analysis of small-sized quasi-servo valve for flexible bending actuator,” Trans. of JSME, Series C, Vol.76, No.772, pp. 3665-3671, 2010. https://doi.org/10.1299/kikaic.76.3665
  15. [15] Y. Sugimoto, K. Naniwa, D. Nakanishi, and K. Osuka, “Tension control of a McKibben pneumatic actuator using a dynamic quantizer,” J. Robot. Mechatron., Vol.35, No.4, pp. 1038-1046, 2023. https://doi.org/10.20965/jrm.2023.p1038
  16. [16] T. Shin, T. Ibayashi, and K. Kogiso, “Detailed dynamic model of antagonistic PAM system and its experimental validation: Sensorless angle and torque control with UKF,” IEEE/ASME Trans. on Mechatronics, Vol.27, Issue 3, pp. 1715-1726, 2005. https://doi.org/10.1109/TMECH.2021.3086218
  17. [17] D. Hirooka, K. Suzumori, and T. Kanda, “Flow control valve for pneumatic actuators using particle excitation by PZT vibrator,” Sensors and Actuators A: Physical, Vol.155, Issue 2, pp. 285-289, 2009. https://doi.org/10.1016/j.sna.2009.07.005
  18. [18] D. Hirooka, T. Yamaguchi, N. Furushiro, K. Suzumori, and T. Kanda, “Development of novel particle excitation flow control valve for stable flow characteristics,” Int. J. Automation Technol., Vol.10, No.4, pp. 540-548, 2016. https://doi.org/10.20965/ijat.2016.p0540
  19. [19] D. Hirooka, N. Furushiro, and T. Yamaguchi, “Micro flow control valve with stable condition using particle-excitation,” J. Robot. Mechatron., Vol.34, No.2, pp. 422-429, 2022. https://doi.org/10.20965/jrm.2022.p0422
  20. [20] D. Hirooka, T. Yamaguchi, N. Furushiro, K. Suzumori, and T. Kanda, “Particle-excitation flow-control valve using piezo vibration-improvement for a high flow rate and research on controllability,” IEEJ Trans. on Sensors and Micromachines, Vol.137, No.1, pp. 32-37, 2017. https://doi.org/10.1541/ieejsmas.137.32

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Mar. 04, 2025