single-rb.php

JRM Vol.35 No.3 pp. 669-683
doi: 10.20965/jrm.2023.p0669
(2023)

Paper:

Development of an Ankle Assistive Robot with Instantly Gait-Adaptive Method

Ming-Yang Xu*, Yi-Fan Hua*, Yun-Fan Li*, Jyun-Rong Zhuang** ORCID Icon, Keisuke Osawa* ORCID Icon, Kei Nakagawa***, Hee-Hyol Lee*, Louis Yuge***, and Eiichiro Tanaka*

*Graduate School of Information, Production and Systems, Waseda University
2-7 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan

**Department of Mechanical Engineering, National Chung Hsing University
No.145, Xingda Rd., South District, Taichung City 402202, Taiwan

***Graduate School of Biomedical and Health Sciences, Hiroshima University
1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan

Received:
December 23, 2022
Accepted:
March 22, 2023
Published:
June 20, 2023
Keywords:
ankle assistive robot, gait adaptation, human-robot interaction
Abstract

As the population ages, the number of elderly people suffering from systemic diseases such as stroke increases. To address this problem, various wearable walking assistive robots have been developed to promote physical exercise for stroke prevention. Wearable assistive robots have shown the ability to improve human mobility. However, most of these robots are heavy, bulky, and impractical. In this study, we developed a compact ankle assistive robot for elderly users to promote walking exercise. By informing the user of correct motion and timing, the robot can guide the user to achieve a healthy gait by only assisting their ankle joint. The robot provides faster-than-ankle motion to allow the user to feel supported while walking. Users can adjust the robot’s assistance parameters through a graphical user interface (GUI) according to their needs. Furthermore, we proposed a gait-adaptive method for ankle assistive robots to adapt to the user’s changing gait. Hence, the robot can automatically adjust the parameters to provide more accurate walking assistance. Finally, the results of an evaluation experiment demonstrated the feasibility of human gait adaptation. The proposed methods have the advantages of low cost and easy implementation.

Ankle assistive robot with instantly gait-adaptive method

Ankle assistive robot with instantly gait-adaptive method

Cite this article as:
M. Xu, Y. Hua, Y. Li, J. Zhuang, K. Osawa, K. Nakagawa, H. Lee, L. Yuge, and E. Tanaka, “Development of an Ankle Assistive Robot with Instantly Gait-Adaptive Method,” J. Robot. Mechatron., Vol.35 No.3, pp. 669-683, 2023.
Data files:
References
  1. [1] S. Galle, P. Malcolm, W. Derave, and D. de Clercq, “Uphill walking with a simple exoskeleton: Plantarflexion assistance leads to proximal adaptations,” Gait Posture, Vol.41, No.1, pp. 246-251, 2015. https://doi.org/10.1016/j.gaitpost.2014.10.015
  2. [2] H. Toda and S. Sugihara, “Ankle Joint Stretching Device Using Tension Rod for Self Rehabilitation,” J. Robot. Mechatron., Vol.33, No.4, pp. 843-850, 2021. https://doi.org/10.20965/jrm.2021.p0843
  3. [3] J. Hong, H. Ohashi, and H. Iwata, “High-Dorsiflexion Assistive System for Passive Swing Phase Dorsiflexion Training and Preventing Compensatory Movements,” J. Robot. Mechatron., Vol.34, No.1, pp. 121-130, 2022. https://doi.org/10.20965/jrm.2022.p0121
  4. [4] T. Kikuchi, T. Ono, M. Nakahara, I. Abe, K. Tanaka, Y. Matsumoto, and N. Chijiwa, “Development and Evaluation of Dorsiflexion Support Unit Using Elastomer Embedded Flexible Joint,” J. Robot. Mechatron., Vol.34, No.4, pp. 857-866, 2022. https://doi.org/10.20965/jrm.2022.p0857
  5. [5] G. M. Gasparri, J. Luque, and Z. F. Lerner, “Proportional Joint-Moment Control for Instantaneously Adaptive Ankle Exoskeleton Assistance,” IEEE Trans. on Neural Systems and Rehabilitation Engineering, Vol.27, No.4, pp. 751-759, 2019. https://doi.org/10.1109/TNSRE.2019.2905979
  6. [6] N. Mizukami, S. Takeuchi, M. Tetsuya, A. Tsukahara, K. Yoshida, A. Matsushima, Y. Maruyama, K. Tako, and M. Hashimoto, “Effect of the synchronization-based control of a wearable robot having a non-exoskeletal structure on the hemiplegic gait of stroke patients,” IEEE Trans. on Neural Systems and Rehabilitation Engineering, Vol.26, No.5, pp. 1011-1016, 2018. https://doi.org/10.1109/TNSRE.2018.2817647
  7. [7] S. Bishe, T. Nguyen, Y. Fang, and Z. F. Lerner, “Adaptive Ankle Exoskeleton Control: Validation Across Diverse Walking Conditions,” IEEE Trans. Med. Robot. Bionics, Vol.3, No.3, pp. 801-812, 2021. https://doi.org/10.1109/TMRB.2021.3091519
  8. [8] T. Kikuchi, S. Tanida, T. Yasuda, and T. Fujikawa, “Automatic adjustment of initial drop speed of foot for intelligently controllable ankle foot orthosis,” 2013 IEEE/SICE Int. Symp. on System Integration (SII 2013), pp. 276-281, 2013. https://doi.org/10.1109/SII.2013.6776632
  9. [9] C. Buesing, G. Fisch, M. O’Donnell, I. Shahidi, L. Thomas, C. K. Mummidisetty, K. J. Williams, H. Takahashi, W. Z. Rymer, and A. Jayaraman, “Effects of a wearable exoskeleton stride management assist system (SMA®) on spatiotemporal gait characteristics in individuals after stroke: A randomized controlled trial,” J. Neuroeng. Rehabil., Vol.12, No.1, pp. 1-14, 2015. https://doi.org/10.1186/s12984-015-0062-0
  10. [10] H. Huang, T. A. Kuiken, and R. D. Lipschutz, “A strategy for identifying locomotion modes using surface electromyography,” IEEE Trans Biomed Eng., Vol.56, No.1, pp. 65-73, 2009. https://doi.org/10.1109/TBME.2008.2003293
  11. [11] H. Yusa, E. Tanaka, T. Ikehara, K. Ito, S. Saegusa, K. Hashimoto, Y. Sato, and L. Yuge, “Development of a walking assistance apparatus using a spatial parallel link mechanism and evaluation of muscle activity,” Proc. IEEE Int. Workshop on Robot and Human Interactive Communication, pp. 151-158, 2010. https://doi.org/10.1109/ROMAN.2010.5598686
  12. [12] E. Tanaka, T. Ikehara, H. Yusa, Y. Sato, T. Sakurai, S. Saegusa, K. Ito, and L. Yuge, “Walking-Assistance Apparatus as a Next-Generation Vehicle and Movable Neuro-Rehabilitation Training Appliance,” J. Robot. Mechatron., Vol.24, No.5, pp. 851-865, 2012. https://doi.org/10.20965/jrm.2012.p0851
  13. [13] E. Tanaka, R. Niwa, K. Osawa, K. Nakajima, K. Muramatsu, K. Watanuki, S. Saegusa, and L. Yuge, “Motion assistance apparatus enabled for neuro-rehabilitation of patients and for the promotion of exercise for the elderly,” IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics (AIM), Vol.2015-August, pp. 937-942, 2015. https://doi.org/10.1109/AIM.2015.7222659
  14. [14] E. Tanaka, Y. Osawa, K. Muramatsu, K. Watanuki, S. Saegusa, and L. Yuge, “Study of RE-Gait® as the Device That Promotes Walking Using a Two-Dimensional Emotion Map,” CISM Int. Centre for Mechanical Sciences, Courses and Lectures, Vol.569, pp. 369-376, 2016. https://doi.org/10.1007/978-3-319-33714-2_41
  15. [15] E. Tanaka, K. Muramatsu, Y. Osawa, S. Saegusa, L. Yuge, and K. Watanuki, “A walking promotion method using the tuning of a beat sound based on a two-dimensional emotion map,” Advances in Intelligent Systems and Computing, Vol.483, pp. 519-525, 2017. https://doi.org/10.1007/978-3-319-41661-8_50
  16. [16] J. Zhuang, Y. Guan, H. Nagayoshi, L. Yuge, H. Lee, and E. Tanaka, “Two-dimensional emotion evaluation with multiple physiological signals,” Advances in Intelligent Systems and Computing, Vol.774, pp. 158-168, 2019. https://doi.org/10.1007/978-3-319-94944-4_18
  17. [17] Y. Li, Y. Gong, J. Zhuang, J. Yang, K. Osawa, K. Nakagawa, H. Lee, and L. Yuge, “Development of Automatic Controlled Walking Assistive Device Based on Fatigue and Emotion Detection,” J. Robot. Mechatron., Vol.34, No.6, pp. 1383-1397, 2022. https://doi.org/10.20965/jrm.2022.p1383
  18. [18] T. Stöckel, R. Jacksteit, M. Behrens, R. Skripitz, R. Bader, and A. Mau-Moeller, “The mental representation of the human gait in young and older adults,” Front. Psychol., Vol.6, Article No.943, 2015. https://doi.org/10.3389/fpsyg.2015.00943
  19. [19] R. Nakamura and H. Nagasaki, “Fundamental Kinesiology,” 6th ed., p. 377, Ishiyaku Publishers, Inc., 2003 (in Japanese).
  20. [20] J. Zhuang, H. Nagayoshi, H. Kondo, K. Muramatsu, K. Watanuki, and E. Tanaka, “Development of a torque limiter for the gear of an assistive walking device,” J. of Advanced Mechanical Design, Systems, and Manufacturing, Vol.11, No.6, 2017. https://doi.org/10.1299/jamdsm.2017jamdsm0089
  21. [21] E. Tanaka, K. Osawa, and Y. Yamamoto, “Development of a stair walking assistive device for the elderly,” The Proc. of the Machine Design and Tribology Division Meeting in JSME 2021, Article No.1250, 2021. https://doi.org/10.1299/jsmemdt.2021.20.1205
  22. [22] T. Kikuchi, T. Oshimoto, I. Abe, K. Tanaka, Y. Asaumi, and N. Chijiwa, “Development of Ankle Support Shoes with Elastomer-Embedded Flexible Joints,” J. Robot. Mechatron., Vol.32, No.5, pp. 1080-1087, 2020. https://doi.org/10.20965/jrm.2020.p1080
  23. [23] T. Watanabe, H. Saito, E. Koike, and K. Nitta, “A preliminary test of measurement of joint angles and stride length with wireless inertial sensors for wearable gait evaluation system,” Comput. Intell. Neurosci., Vol.2011, 2011. https://doi.org/10.1155/2011/975193
  24. [24] J. Zhuang, “Study on walking assistance considering emotion evaluation with a device of compact design,” Ph.D. dissertation, Waseda University, 2020.
  25. [25] N. Sekiya, H. Nagasaki, H. Ito, and T. Furuna, “Optimal Walking in Terms of Variability in Step Length,” J. of Orthopaedic and Sports Physical Therapy, Vol.26, No.5, pp. 266-272, 1997. https://doi.org/10.2519/jospt.1997.26.5.266
  26. [26] A. Gabell and U. S. L. Nayak, “The Effect of Age on Variability in Gait,” J. Gerontol., Vol.39, No.6, pp. 662-666, 1984. https://doi.org/10.1093/geronj/39.6.662
  27. [27] K. Yasuhara, K. Shimada, T. Koyama, T. Ido, K. Kikuchi, and Y. Endo, “Walking Assist Device with Stride Management System,” Article of Honda R&D Technical Review, Vol.21, No.2, pp. 54-62, 2009.
  28. [28] J. Zhuang, G. Wu, H. Lee, and E. Tanaka, “Evaluation of the Walking-Emotion Relationship for Applying to an Assistive Walking Device,” Proc. of the Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society (EMBS), pp. 3147-3150, 2019. https://doi.org/10.1109/EMBC.2019.8856622

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jun. 19, 2024