single-rb.php

JRM Vol.31 No.6 pp. 772-780
doi: 10.20965/jrm.2019.p0772
(2019)

Paper:

Shadow-Based Operation Assistant for a Pipeline-Inspection Robot Using a Variance Value of the Image Histogram

Atsushi Kakogawa, Yuki Komurasaki, and Shugen Ma

Ritsumeikan University
1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan

Received:
May 20, 2019
Accepted:
September 13, 2019
Published:
December 20, 2019
Keywords:
mobile robot, image processing, infrastructure inspection, snake robot
Abstract
Shadow-Based Operation Assistant for a Pipeline-Inspection Robot Using a Variance Value of the Image Histogram

Articulated wheeled in-pipe inspection robot: AIRo-2.2

This paper presents a shadow-based operation assistant method for a pipeline-inspection robot using a variance value of the image histogram. By displacing the position of the head camera relative to that of the illuminator, a crescent-shaped shadow appears in the images captured in a bent pipe. The size, position, and orientation of the shadow depend on the robot’s orientation around the pipe axis. By applying the pathway direction of the bent pipe obtained from the image processing to the rolling movement, the robot can automatically adjust its roll-orientation. Experiments were conducted in four types of pipeline environments to verify the autonomous navigation. These include a complex winding pipeline, a long straight pipe, and pipelines with replicated dust and dirt.

Cite this article as:
A. Kakogawa, Y. Komurasaki, and S. Ma, “Shadow-Based Operation Assistant for a Pipeline-Inspection Robot Using a Variance Value of the Image Histogram,” J. Robot. Mechatron., Vol.31, No.6, pp. 772-780, 2019.
Data files:
References
  1. [1] M. Ono, M. Otsuki, and S. Kato, “A Study of an In-Pipe Microrobot Having Bulging Friction Brakes,” J. Robot. Mechatron., Vol.17, No.3, pp. 255-261, doi: 10.20965/jrm.2005.p0255, 2005.
  2. [2] S. Horii and T. Nakamura, “An In-Pipe Mobile Robot for Use as an Industrial Endoscope Based on an Earthworm’s Peristaltic Crawling,” J. Robot. Mechatron., Vol.24, No.6, pp. 1054-1062, doi: 10.20965/jrm.2012.p1054, 2012.
  3. [3] T. Nishimura, A. Kakogawa, and S. Ma, “Improvement of a Screw Drive In-Pipe Robot with Pathway Selection Mechanism to Pass Through T-Branches,” J. Robot. Mechatron., Vol.25, No.2, pp. 340-346, doi: 10.20965/jrm.2013.p0340, 2013.
  4. [4] R. Torbin, W. Leary, and G. C. Vradis, “Robotic Inspection System for Unpiggable Pipelines,” Proc. of the Int. Pipeline Conf., pp. 1077-1086, doi: 10.1115/IPC2004-0563, 2004.
  5. [5] G. C. Vradis and W. Leary, “Development of an Inspection Platform and a Suite of Sensors for Assessing Corrosion and Mechanical Damage on Unpiggable Transmission Mains Quarterly Report,” Northeast Gas Association, 2004.
  6. [6] E. Dertien, S. Stramigioli, and K. Pulles, “Development of an Inspection Robot for Small Diameter Gas Distribution Mains,” Proc. of the IEEE Int. Conf. Robotics and Automation, pp. 5044-5049, doi: 10.1109/ICRA.2011.5980077, 2011.
  7. [7] E. Dertien, M. Foumashi, K. Pulles, and S. Stramigioli, “Design of a Robot for In-Pipe Inspection using Omnidirectional Wheels and Active Stabilization,” Proc. of the IEEE Int. Conf. Robotics and Automation, pp. 5121-5126, doi: 10.1109/ICRA.2014.6907610, 2014.
  8. [8] H. Yamada and S. Hirose, “Development of Practical 3-Dimensional Active Cord Mechanism ACM-R4,” J. Robot. Mechatron., Vol.18, No.3, pp. 305-311, doi: 10.20965/jrm.2006.p0305, 2006.
  9. [9] H. Yamada, S. Takaoka, and S. Hirose, “A Snake-Like Robot for Real-World Inspection Applications (The Design and Control of a Practical Active Cord Mechanism),” Advanced Robotics, Vol.27, No.1, pp. 47-60, doi: 10.1080/01691864.2013.752318, 2013.
  10. [10] K. Kouno, H. Yamada, and S. Hirose, “Development of Active-Joint Active-Wheel High Traversability Snake-Like Robot ACM-R4.2,” J. Robot. Mechatron., Vol.25, No.3, pp. 559-566, doi: 10.20965/jrm.2013.p0559, 2013.
  11. [11] K. Isomura and S. Hirose, “Development of Articulated Spherical Wheeled In-pipe Robot “ThesV”,” Proc. of the JSME Conf. Robotics and Mechatronics, 2A2-M02, 2011 (in Japanese).
  12. [12] K. Isomura, M. Guarnieri, P. Debenest, M. Takasu, and S. Hirose, “Development of the Articulated Spherical Wheeled In-pipe Robot “ThesV” – 2nd report: Mechanism improvements and comprehensive experiments of piping corrosion inspection –,” Proc. of the JSME Conf. Robotics and Mechatronics, 2A2-M02, 2012 (in Japanese).
  13. [13] P. Debenest, M. Guarnieri, and S. Hirose, “PipeTron Series – Robots for Pipe Inspection,” Proc. of the 3rd Int. Conf. Applied Robotics for the Power Industry, pp. 1-6, doi: 10.1109/CARPI.2014.7030052, 2014.
  14. [14] S. Fjerdingen, P. Liljebäck, and A. Transeth, “A Snake-like Robot for Internal Inspection of Complex Pipe Structures (PIKo),” Proc. of the IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp. 5665-5671, doi: 10.1109/IROS.2009.5354751, 2009.
  15. [15] A. Kakogawa and S. Ma, “Design of a Multilink-articulated Wheeled Inspection Robot for Winding Pipelines: AIRo-II,” Proc. of the IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp. 2115-2121, doi: 10.1109/IROS.2016.7759332, 2016.
  16. [16] A. Kakogawa and S. Ma, “Design of a Multilink-articulated Wheeled Pipeline Inspection Robot Using Only Passive Elastic Joints,” Advanced Robotics, Vol.32, Issue 1, pp. 37-50, doi: 10.1080/01691864.2017.1393348, 2018.
  17. [17] A. Kakogawa, Y. Oka, and S. Ma, “Multi-link Articulated Wheeled In-pipe Robot with Underactuated Twisting Joints,” Proc. of the IEEE Int. Conf. Mechatronics and Automation, pp. 942-947, doi: 10.1109/ICMA.2018.8484370, 2018.
  18. [18] A. Kakogawa and S. Ma, “A Differential Elastic Joint for Multi-Linked Pipeline Inspection Robots,” Proc. of the IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp. 949-954, doi: 10.1109/IROS.2018.8593872, 2018.
  19. [19] Y. Oka, A. Kakogawa, and S. Ma, “Stopper Angle Design for a Multi-link Articulated Wheeled In-Pipe Robot with Underactuated Twisting Joints,” Proc. of the IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp. 973-978, doi: 10.1109/IROS.2018.8594208, 2018.
  20. [20] A. Kakogawa and S. Ma, “An In-pipe Inspection Module with an Omnidirectional Bent-pipe Self-adaptation Mechanism using a Joint Torque Control,” Proc. the IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 2019.
  21. [21] K. Tadakuma, “Tetrahedral Mobile Robot with Novel Ball Shape Wheel,” Proc. of the First IEEE/RAS-EMBS Int. Conf. Biomedical Robotics and Biomechatronics, pp. 946-952, doi: 10.1109/BIOROB.2006.1639213, 2006.
  22. [22] K. Tadakuma, R. Tadakuma, and J. Berengeres, “Development of Holonomic Omnidirectional Vehicle with “Omni-Ball”: Spherical Wheels,” Proc. of the IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp. 33-39, doi: 10.1109/IROS.2007.4399560, 2007.
  23. [23] R. Kirkham, P. D. Kearney, K. J. Rogers, and J. Mashford, “PIRAT – A System for Quantitative Sewer Pipe Assessment,” Int. J. of Robotics Research, Vol.19, No.11, pp. 1033-1053, doi: 10.1177/02783640022067959, 2000.
  24. [24] O. Duran, K. Althoefer, and L. D. Seneviratne, “Pipe Inspection Using a Laser-Based Transducer and Automated Analysis Techniques,” IEEE/ASME Trans. on Mechatronics, Vol.8, No.3, pp. 401-409, doi: 10.1109/TMECH.2003.816809, 2003.
  25. [25] A. Ahrary, Y. Kawamura, and M. Ishikawa, “A Laser Scanner for Landmark Detection with the Sewer Inspection Robot KANTARO,” Proc. of the IEEE/SMC Int. Conf. System of Systems Engineering, pp. 310-315, doi: 10.1109/SYSOSE.2006.1652314, 2006.
  26. [26] A. Ahrary, M. Ishikawa, and M. Okada, “Experimental Evaluation of Intelligent Fault Detection System for Inspection of Sewer Pipes,” Proc. of the IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp. 1248-1253, doi: 10.1109/IROS.2007.4399400, 2007.
  27. [27] T. Vidal-Calleja, J. V. Miro, F. Martin, D. C. Lingnau, and D. E. Russell, “Automatic Detection and Verification of Pipeline Construction Features with Multi-modal Data,” Proc. of the IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp. 3116-3122, doi: 10.1109/IROS.2014.6942993, 2014.
  28. [28] Y. S. Choi, H. M. Kim, J. S. Suh, H. M. Mun, S. U. Yang, C. M. Park, and H. R. Choi, “Recognition of Inside Pipeline Geometry by Using PSD Sensors for Autonomous Navigation,” Proc. of the IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp. 5024-5029, doi: 10.1109/IROS.2014.6943276, 2014.
  29. [29] P. Hansen, H. Alismail, B. Browning, and P. Rander, “Stereo Visual Odometry for Pipe Mapping,” Proc. of the IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp. 4020-4025, doi: 10.1109/IROS.2011.6094911, 2011.
  30. [30] P. Hansen, H. Alismail, P. Rander, and B. Browning, “Pipe Mapping with Monocular Fisheye Imagery,” Proc. of the IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp. 5180-5185, doi: 10.1109/IROS.2013.6697105, 2013.
  31. [31] P. Hansen, H. Alismail, P. Rander, and B. Browning, “Visual Mapping for Natural Gas Pipe Inspection,” Int. J. of Robotics Research, Vol.34, No.4-5, pp. 532-558, doi: 10.1177/0278364914550133, 2014.
  32. [32] M. Kolesnik and H. Streich, “Visual Orientation and Motion Control of MAKRO – Adaptation to the Sewer Environment,” Proc. Int. Conf. Simulation of Adaptive Behavior, pp. 62-69, 2002.
  33. [33] J. Lee, S. Roh, D. W. Kim, H. Moon, and H. R. Choi, “In-pipe Robot Navigation Based on the Landmark Recognition System Using Shadow Images,” Proc. of the IEEE Int. Conf. Robotics and Automation, pp. 1857-1862, doi: 10.1109/ROBOT.2009.5152724, 2009.
  34. [34] D. H. Lee, H. Moon, and H. R. Choi, “Landmark Detection Methods for In-pipe Robot Traveling in Urban Gas Pipelines,” Robotica, Vol.34, Issue 3, pp. 601-618, doi: 10.1017/S0263574714001726, 2016.
  35. [35] A. Kakogawa, Y. Komurasaki, and S. Ma, “Anisotropic Shadow-based Operation Assistant for a Pipeline-inspection Robot using a Single Illuminator and Camera,” Proc. of the IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp. 1305-1310, doi: 10.1109/IROS.2017.8202306, 2017.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Aug. 09, 2020