single-rb.php

JRM Vol.33 No.2 pp. 231-241
doi: 10.20965/jrm.2021.p0231
(2021)

Paper:

Aerial Manipulator Control Method Based on Generalized Jacobian

Takahiro Ikeda*, Kenichi Ohara**, Akihiko Ichikawa**, Satoshi Ashizawa**, Takeo Oomichi**, and Toshio Fukuda**

*Gifu University
1-1 Yanagido, Gifu city, Gifu 501-1193, Japan

**Meijo University
501-1 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi 468-8502, Japan

Received:
September 11, 2020
Accepted:
February 4, 2021
Published:
April 20, 2021
Keywords:
unmanned aerial vehicle (UAV), generalized Jacobian, bridge inspection, visual inspection
Abstract
Aerial Manipulator Control Method Based on Generalized Jacobian

Aerial manipulator for visual verification

This paper describes a control method for an aerial manipulator on an unmanned aerial vehicle (UAV) by using a generalized Jacobian (GJ). Our task is to realize visual check of bridge inspection by employing a UAV with a multi-degree-of-freedom (DoF) manipulator on its top. The manipulator is controlled by using the GJ. Subsequently, by comparing the aerial manipulator control with a conventional Jacobian experimentally, we discovered that the accuracy of the control improved by applying the GJ. The manipulator has three DoFs in the XZ plane of the UAV coordinate system. The experiment shows that the manipulator controlled with the GJ can compensate for the pose error of the body by 54.5% and 47.7% in the X– and Z-axes, respectively.

Cite this article as:
Takahiro Ikeda, Kenichi Ohara, Akihiko Ichikawa, Satoshi Ashizawa, Takeo Oomichi, and Toshio Fukuda, “Aerial Manipulator Control Method Based on Generalized Jacobian,” J. Robot. Mechatron., Vol.33, No.2, pp. 231-241, 2021.
Data files:
References
  1. [1] T. Ikeda, S. Yasui, M. Fujihara, K. Ohara, S. Ashizawa, A. Ichikawa, A. Okino, T. Oomichi, and T. Fukuda, “Wall contact by octo-rotor uav with one dof manipulator for bridge inspection,” Proc. of 2017 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pp. 5122-5127, 2017.
  2. [2] T. Ikeda, S. Yasui, K. Ohara, S. Ashizawa, A. Ichikawa, A. Okino, T. Oomichi, and T. Fukuda, “Pilot test on hammering quality control of bridge inspection by multi-rotor uav with one dof manipulator,” Proc. of 28th 2017 Int. Symp. on Micro-NanoMechatronics and Human Science, pp. 151-152, 2017.
  3. [3] T. Ikeda, S. Yasui, S. Minamiyama, K. Ohara, S. Ashizawa, A. Ichikawa, A. Okino, T. Oomichi, and T. Fukuda, “Stable impact and contact force control by uav for inspection of floor slab of bridge,” Advanced Robotics, Vol.32, No.19, pp. 1061-1076, 2018.
  4. [4] T. Ikeda, S. Yasui, K. Ohara, A. Ichikawa, S. Ashizawa, A. Okino, T. Oomichi, and T. Fukuda, “Improvement of contact condition between bridge inspecting aerial manipulator by applying compliance mechanism,” Proc. of 2018 Int. Symp. on Micro-NanoMechatronics and Human Science (MHS2018), MP2-2-5, 2018.
  5. [5] T. Ikeda, S. Minamiyama, S. Yasui, K. Ohara, S. Ashizawa, A. Ichikawa, A. Okino, T. Oomichi, and T. Fukuda, “Stable camera position control of unmanned aerial vehicle with three-degree-of-freedom manipulator for visual test of bridge inspection,” J. of Field Robotics, pp. 1-10, doi: 10.1002/rob.21899, 2019.
  6. [6] T. Fukuda, F. Arai, H. Matsuura, K. Nishibori, H. Sakauchi, and N. Yoshii, “A study on wall surface mobile robots: Development of moving mechanism for crawler-type wall surface mobile robots with vacuum pads,” JSME Int. J., Series C, Vol.38, No.2, pp. 292-299, 1995.
  7. [7] B. L. Luk, D. S. Cooke, S. Galt, A. A. Collie, and S. Chen, “Intelligent legged climbing service robot for remote maintenance applications in hazardous environments,” Robotics and Autonomous Systems, Vol.53, pp. 142-152, 2005.
  8. [8] M. P. Murphy and M. Sitti, “Waalbot: An agile small-scale wall-climbing robot utilizing dry elastomer adhesives,” IEEE/ASME Trans. on Mechatoronics, Vol.12, No.3, pp. 330-338, 2007.
  9. [9] K. Nonami, “Drone technology, cutting-edge drone business, and future prospects,” J. Robot. Mechatron., Vol.28, No.3, pp. 262-272, 2016.
  10. [10] K. Hidaka, D. Fujimoto, and K. Sato, “Autonomous adaptive flight control of a uav for practical bridge inspection using multiple-camera image coupling method,” J. Robot. Mechatron., Vol.31, No.6, pp. 845-854, 2019.
  11. [11] N. Metni and T. Hamel, “A uav for bridge inspection: Visual servoing control law with orientation limits,” Automation in Construction, Vol.17, pp. 3-10, 2007.
  12. [12] S. Omari, P. Gohl, M. Burri, M. Achtelik, and R. Siegwart, “Visual industrial inspection using aerial robots,” Proc. of the 2014 3rd Int. Conf. on Applied Robotics for the Power Industry, pp. 1-5, 2014.
  13. [13] G. Morgenthal and N. Hallermann, “Quality assessment of unmanned aerial vehicle (uav) based visual inspection of structures,” Advances in Structural Engineering, Vol.17, No.3, pp. 289-302, 2014.
  14. [14] F. Bonnin-Pascual, A. Ortiz, E. Garcia-Fidalgo, and J. P. Company, “A micro-aerial platform for vessel visual inspection based on supervised autonomy,” Proc. of 2015 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pp. 46-52, 2015.
  15. [15] J. Nikolic, M. Burri, J. Rehder, S. Leutenegger, C. Huerzeler, and R. Siegwart, “A uav system for inspection of industrial facilities,” Proc. of 2013 IEEE Aerospace Conf., pp. 1-8, 2013.
  16. [16] N. Piasco, J. Marzat, and M. Sanfourche, “Collaborative localization and formation flying using distributed stereo-vision,” Proc. of 2016 IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 1202-1207, 2016.
  17. [17] D. Meier, R. Brockers, L. Matthies, R. Siegwart, and S. Weiss, “Detection and characterization of moving objects with aerial vehicles using inertial-optical flow,” Proc. of 2015 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pp. 2473-2480, 2015.
  18. [18] D. Abeywardena, S. Huang, B. Barnes, G. Dissanayake, and S. Kodagoda, “Fast, on-board, model-aided visual-inertial odometry system for quadrotor micro aerial vehicles,” Proc. of 2016 IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 1530-1537, 2016.
  19. [19] C. Powers, D. Mellinger, A. Kushleyev, B. Kothmann, and V. Kumar, “Influence of aerodynamics and proximity effects in quadrotor flight, experimental robotics,” Springer Tracts in Advanced Robotics, Vol.88, pp. 289-302, 2013.
  20. [20] P. J. Sanchez-Cuevas, G. Heredia, and A. Ollero, “Multirotor uas for bridge inspection by contact using the ceiling effect,” Proc. of 2017 Int. Conf. on Unmanned Aircraft Systems (ICUAS), pp. 767-774, 2017.
  21. [21] F. Huber, K. Kondak, K. Krieger, D. Sommer, M. Schwarzbach, M. Laiacker, I. Kossyk, S. Parusel, S. Haddadin, and A. Albu-Schäffer, “First analysis and experiments in aerial manipulation using fully actuated redundant robot arm,” Proc. of 2013 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 3452-3457, 2013.
  22. [22] F. Ruggiero, M. A. Trujillo, R. Cano, H. Ascorbe, A. Viguria, C. Peréz, V. Lippiello, A. Ollero, and B. Siciliano, “A multilayer control for multirotor uavs equipped with a servo robot arm,” Proc. of 2015 IEEE Int. Conf. on Robotics and Automation, pp. 4014-4020, 2015.
  23. [23] C. Wu, J. Qi, D. Song, X. Qi, T. Lin, and J. Han, “Development of an unmanned helicopter automatic barrels transportation system,” Proc. of 2015 IEEE Int. Conf. on Robotics and Automation, pp. 4686-4691, 2015.
  24. [24] H. Yang and D. Lee, “Hierarchical cooperative control framework of multiple quadrotor-manipulator systems,” Proc. of 2015 IEEE Int. Conf. on Robotics and Automation, pp. 4656-4662, 2015.
  25. [25] G. Garimella and M. Kobilarov, “Towards model-predictive control for aerial pick-and-place,” Proc. of 2015 IEEE Int. Conf. on Robotics and Automation, pp. 4692-4697, 2015.
  26. [26] M. Sharifi and H. Sayyaadi, “Nonlinear robust adaptive cartesian impedance control of uavs equipped with a robot manipulator,” Advanced Robotics, Vol.29, No.3, pp. 171-186, 2015.
  27. [27] A. E. Jimenez-Cano, J. Braga, G. Heredia, and A. Ollero, “Aerial manipulator for structure inspection by contact from the underside,” Proc. of 2015 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pp. 1879-1884, 2015.
  28. [28] V. Nayak, C. Papachristos, and K. Alexis, “Design and control of an aerial manipulator for contact-based inspection,” CoRR, abs/1804.03756, 2018.
  29. [29] Y. Umetani and K. Yoshida, “Resolved motion rate control of space manipulators with generalizes Jacobian matrix,” IEEE Trans. on Robotics and Automation, Vol.5, No.3, pp. 303-314, 1989.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on May. 10, 2021