single-rb.php

JRM Vol.36 No.6 pp. 1302-1314
doi: 10.20965/jrm.2024.p1302
(2024)

Paper:

Autonomous Inspection System for Underground Pits Using an Articulated Mobile Robot

Motoyasu Tanaka* ORCID Icon, Sota Miyamoto*, Shigeaki Takatsu*, Yutaro Kimura*, and Hironori Tozawa**

*The University of Electro-Communications
1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan

**Daisue Construction Co., Ltd.
1-7-27 Shinsuna, Koto-ku, Tokyo 136-8517, Japan

Received:
October 28, 2023
Accepted:
January 12, 2024
Published:
December 20, 2024
Keywords:
snake robot, underground pit, articulated mobile robot, autonomous inspection, winding pipe
Abstract

This study presents an autonomous inspection system for underground pits using an articulated mobile robot. The underground pit is composed of several rooms surrounded by concrete connected to each other by winding pipes. Based on an action list created in advance and environmental maps, the robot autonomously inspects the underground pit by switching between three actions: planar motion, winding pipe passing motion, and image capturing. In planar motion, the robot moves around the room while avoiding obstacles and crosses ditches through distinctive behaviors, switching the allocation of the grounded/ungrounded wheels. In the winding pipe-passing motion, the target path is autonomously generated based on the parameters of the winding pipe. Laboratory and field tests were conducted to demonstrate the effectiveness of the proposed system.

The articulated mobile robot

The articulated mobile robot

Cite this article as:
M. Tanaka, S. Miyamoto, S. Takatsu, Y. Kimura, and H. Tozawa, “Autonomous Inspection System for Underground Pits Using an Articulated Mobile Robot,” J. Robot. Mechatron., Vol.36 No.6, pp. 1302-1314, 2024.
Data files:
References
  1. [1] H. Shi et al., “A review for control theory and condition monitoring on construction robots,” J. Field Robot., Vol.40, No.4, pp. 934-954, 2023. https://doi.org/10.1002/rob.22156
  2. [2] D. Lattanzi and G. Miller, “Review of robotic infrastructure inspection systems,” J. Infrastruct. Syst., Vol.23, No.3, Article No.04017004, 2017. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000353
  3. [3] K. Nagatani et al., “Redesign of rescue mobile robot Quince,” 2011 IEEE Int. Symp. Saf. Secur. Rescue Robot., pp. 13-18, 2011. https://doi.org/10.1109/SSRR.2011.6106794
  4. [4] E. Rohmer et al., “Integration of a sub-crawlers’ autonomous control in Quince highly mobile rescue robot,” 2010 IEEE/SICE Int. Symp. Syst. Integr., pp. 78-83, 2010. https://doi.org/10.1109/SII.2010.5708305
  5. [5] B. Katz, J. Di Carlo, and S. Kim, “Mini Cheetah: A platform for pushing the limits of dynamic quadruped control,” 2019 Int. Conf. Robot. Autom., pp. 6295-6301, 2019. https://doi.org/10.1109/ICRA.2019.8793865
  6. [6] M. Hutter et al., “ANYmal—A highly mobile and dynamic quadrupedal robot,” 2016 IEEE/RSJ Int. Conf. Intell. Robots Syst., pp. 38-44, 2016. https://doi.org/10.1109/IROS.2016.7758092
  7. [7] K. Hashimoto et al., “WAREC-1 – A four-limbed robot having high locomotion ability with versatility in locomotion styles,” 2017 IEEE Int. Symp. Saf. Secur. Rescue Robot., pp. 172-178, 2017. https://doi.org/10.1109/SSRR.2017.8088159
  8. [8] T. Matsuzawa et al., “Moving onto high steps for a four-limbed robot with torso contact,” 2019 IEEE/RSJ Int. Conf. Intell. Robots Syst., pp. 6324-6331, 2019. https://doi.org/10.1109/IROS40897.2019.8967833
  9. [9] S. Jordan et al., “State-of-the-art technologies for UAV inspections,” IET Radar Sonar Navig., Vol.12, No.2, pp. 151-164, 2018. https://doi.org/10.1049/iet-rsn.2017.0251
  10. [10] K.-U. Scholl, V. Kepplin, K, Berns, and R. Dillmann, “Controlling a multi-joint robot for autonomous sewer inspection,” IEEE Int. Conf. Robot. Autom., Vol.2, pp. 1701-1706, 2000. https://doi.org/10.1109/ROBOT.2000.844841
  11. [11] H. Streich and O. Adria, “Software approach for the autonomous inspection robot MAKRO,” IEEE Int. Conf. Robot. Autom., Vol.4, pp. 3411-3416, 2004. https://doi.org/10.1109/ROBOT.2004.1308781
  12. [12] S. A. Fjerdingen, P. Liljebäck, and A. A. Transeth, “A snake-like robot for internal inspection of complex pipe structures (PIKo),” IEEE/RSJ Int. Conf. Intell. Robots Syst., pp. 5665-5671, 2009. https://doi.org/10.1109/IROS.2009.5354751
  13. [13] H. Sawabe, M. Nakajima, M. Tanaka, K. Tanaka, and F. Matsuno, “Control of an articulated wheeled mobile robot in pipes,” Adv. Robot., Vol.33, No.20, pp. 1072-1086, 2019. https://doi.org/10.1080/01691864.2019.1666737
  14. [14] S. Hirose and A. Morishima, “Design and control of a mobile robot with an articulated body,” Int. J. Robot. Res., Vol.9, No.2, pp. 99-114, 1990. https://doi.org/10.1177/027836499000900208
  15. [15] S. Hirose, E. F. Fukushima, and S. Tsukagoshi, “Basic steering control methods for the articulated body mobile robot,” IEEE Control Syst. Mag., Vol.15, No.1, pp. 5-14, 1995. https://doi.org/10.1109/37.341858
  16. [16] T. Kamegawa, T. Yamasaki, H. Igarashi, and F. Matsuno, “Development of the snake-like rescue robot ‘kohga’,” IEEE Int. Conf. Robot. Autom., pp. 5081-5086, 2004. https://doi.org/10.1109/ROBOT.2004.1302523
  17. [17] M. Arai, Y. Tanaka, S. Hirose, H. Kuwahara, and S. Tsukui, “Development of ‘Souryu-IV’ and ‘Souryu-V:’ Serially connected crawler vehicles for in-rubble searching operations,” J. Field Robot., Vol.25, Nos.1-2, pp. 31-65, 2008. https://doi.org/10.1002/rob.20229
  18. [18] J. Borenstein, M. Hansen, and A. Borrell, “The OmniTread OT-4 serpentine robot–Design and performance,” J. Field Robot., Vol.24, No.7, pp. 601-621, 2007. https://doi.org/10.1002/rob.20196
  19. [19] M. Tanaka, M. Nakajima, Y. Suzuki, and K. Tanaka, “Development and control of articulated mobile robot for climbing steep stairs,” IEEE/ASME Trans. Mechatron., Vol.23, No.2, pp. 531-541, 2018. https://doi.org/10.1109/TMECH.2018.2792013
  20. [20] M. Tanaka, K. Tadakuma, M. Nakajima, and M. Fujita, “Task-space control of articulated mobile robots with a soft gripper for operations,” IEEE Trans. Robot., Vol.35, No.1, pp. 135-146, 2019. https://doi.org/10.1109/TRO.2018.2878361
  21. [21] M. Tanaka et al., “Development and field test of the articulated mobile robot T2 Snake-4 for plant disaster prevention,” Adv. Robot., Vol.34, No.2, pp. 70-88, 2020. https://doi.org/10.1080/01691864.2019.1680316
  22. [22] C. W. Chin, M. Nakajima, K. Furuike, K. Kon, and M. Tanaka, “Development and control of an articulated mobile robot T2 snake-4.2 for plant disaster prevention – Development of M2 arm and C-hand,” Adv. Robot., Vol.36, No.21, pp. 1134-1155, 2022. https://doi.org/10.1080/01691864.2022.2138540
  23. [23] M. Tanaka, K. Kon, and K. Tanaka, “Range-sensor-based semiautonomous whole-body collision avoidance of a snake robot,” IEEE Trans. Control Syst. Technol., Vol.23, No.5, pp. 1927-1934, 2015. https://doi.org/10.1109/TCST.2014.2382578
  24. [24] M. Tanaka, M. Nakajima, and K. Tanaka, “Smooth control of an articulated mobile robot with switching constraints,” Adv. Robot., Vol.30, No.1, pp. 29-40, 2016. https://doi.org/10.1080/01691864.2015.1102646
  25. [25] G. Granosik, “Hypermobile robots – The survey,” J. Intell. Robot. Syst., Vol.75, No.1, pp. 147-169, 2014. https://doi.org/10.1007/s10846-013-9985-5
  26. [26] B. Murugendran, A. A. Transeth, and S. A. Fjerdingen, “Modeling and path-following for a snake robot with active wheels,” 2009 IEEE/RSJ Int. Conf. Intell. Robots Syst., pp. 3643-3650, 2009. https://doi.org/10.1109/IROS.2009.5353886
  27. [27] L. Pfotzer, S. Klemm, A. Roennau, J. M. Zöllner, and R. Dillmann, “Autonomous navigation for reconfigurable snake-like robots in challenging, unknown environments,” Robot. Auton. Syst., Vol.89, pp. 123-135, 2017. https://doi.org/10.1016/j.robot.2016.11.010
  28. [28] H. Yamada and S. Hirose, “Development of practical 3-dimensional active cord mechanism ACM-R4,” J. Robot. Mechatron., Vol.18, No.3, pp. 305-311, 2006. https://doi.org/10.20965/jrm.2006.p0305
  29. [29] H. Yamada, S. Takaoka, and S. Hirose, “A snake-like robot for real-world inspection applications (the design and control of a practical active cord mechanism),” Adv. Robot., Vol.27, No.1, pp. 47-60, 2013. https://doi.org/10.1080/01691864.2013.752318
  30. [30] K. Kouno, H. Yamada, and S. Hirose, “Development of active-joint active-wheel high traversability snake-like robot ACM-R4.2,” J. Robot. Mechatron., Vol.25, No.3, pp. 559-566, 2013. https://doi.org/10.20965/jrm.2013.p0559
  31. [31] R. Ueda, T. Arai, K. Sakamoto, T. Kikuchi, and S. Kamiya, “Expansion resetting for recovery from fatal error in Monte Carlo localization – Comparison with sensor resetting methods,” 2004 IEEE/RSJ Int. Conf. Intell. Robots Syst., Vol.3, pp. 2481-2486, 2004. https://doi.org/10.1109/IROS.2004.1389781
  32. [32] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to collision avoidance,” IEEE Robot. Autom. Mag., Vol.4, No.1, pp. 23-33, 1997. https://doi.org/10.1109/100.580977
  33. [33] H. Komura, H. Yamada, and S. Hirose, “Development of snake-like robot ACM-R8 with large and mono-tread wheel,” Adv. Robot., Vol.29, No.17, pp. 1081-1094, 2015. https://doi.org/10.1080/01691864.2014.971054
  34. [34] F. Matsuno and K. Mogi, “Redundancy controllable system and control of snake robots based on kinematic model,” Proc. 39th IEEE Conf. Decis. Control, Vol.5, pp. 4791-4796, 2000. https://doi.org/10.1109/CDC.2001.914686
  35. [35] M. Tanaka and K. Tanaka, “Shape control of a snake robot with joint limit and self-collision avoidance,” IEEE Trans. Control Syst. Technol., Vol.25, No.4, pp. 1441-1448, 2017. https://doi.org/10.1109/TCST.2016.2614832
  36. [36] Y. Nakamura, H. Hanafusa, and T. Yoshikawa, “Task-priority based redundancy control of robot manipulators,” Int. J. Robot. Res., Vol.6, No.2, pp. 3-15, 1987. https://doi.org/10.1177/027836498700600201
  37. [37] M. Tanaka, M. Nakajima, R. Ariizumi, and K. Tanaka, “Three-dimensional steering for an articulated mobile robot with prismatic joints with consideration of hardware limitations,” Adv. Robot., Vol.34, No.11, pp. 767-779, 2020. https://doi.org/10.1080/01691864.2020.1753568
  38. [38] M. Nakajima, S. Fukumura, K. Tanaka, and M. Tanaka, “Local body shape control of an articulated mobile robot and an application for recovery from a stuck state,” Adv. Robot., Vol.36, No.10, pp. 488-500, 2022. https://doi.org/10.1080/01691864.2022.2063036

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jan. 08, 2025