Paper:
Autonomous Inspection System for Underground Pits Using an Articulated Mobile Robot
Motoyasu Tanaka* , Sota Miyamoto*, Shigeaki Takatsu*, Yutaro Kimura*, and Hironori Tozawa**
*The University of Electro-Communications
1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
**Daisue Construction Co., Ltd.
1-7-27 Shinsuna, Koto-ku, Tokyo 136-8517, Japan
This study presents an autonomous inspection system for underground pits using an articulated mobile robot. The underground pit is composed of several rooms surrounded by concrete connected to each other by winding pipes. Based on an action list created in advance and environmental maps, the robot autonomously inspects the underground pit by switching between three actions: planar motion, winding pipe passing motion, and image capturing. In planar motion, the robot moves around the room while avoiding obstacles and crosses ditches through distinctive behaviors, switching the allocation of the grounded/ungrounded wheels. In the winding pipe-passing motion, the target path is autonomously generated based on the parameters of the winding pipe. Laboratory and field tests were conducted to demonstrate the effectiveness of the proposed system.
- [1] H. Shi et al., “A review for control theory and condition monitoring on construction robots,” J. Field Robot., Vol.40, No.4, pp. 934-954, 2023. https://doi.org/10.1002/rob.22156
- [2] D. Lattanzi and G. Miller, “Review of robotic infrastructure inspection systems,” J. Infrastruct. Syst., Vol.23, No.3, Article No.04017004, 2017. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000353
- [3] K. Nagatani et al., “Redesign of rescue mobile robot Quince,” 2011 IEEE Int. Symp. Saf. Secur. Rescue Robot., pp. 13-18, 2011. https://doi.org/10.1109/SSRR.2011.6106794
- [4] E. Rohmer et al., “Integration of a sub-crawlers’ autonomous control in Quince highly mobile rescue robot,” 2010 IEEE/SICE Int. Symp. Syst. Integr., pp. 78-83, 2010. https://doi.org/10.1109/SII.2010.5708305
- [5] B. Katz, J. Di Carlo, and S. Kim, “Mini Cheetah: A platform for pushing the limits of dynamic quadruped control,” 2019 Int. Conf. Robot. Autom., pp. 6295-6301, 2019. https://doi.org/10.1109/ICRA.2019.8793865
- [6] M. Hutter et al., “ANYmal—A highly mobile and dynamic quadrupedal robot,” 2016 IEEE/RSJ Int. Conf. Intell. Robots Syst., pp. 38-44, 2016. https://doi.org/10.1109/IROS.2016.7758092
- [7] K. Hashimoto et al., “WAREC-1 – A four-limbed robot having high locomotion ability with versatility in locomotion styles,” 2017 IEEE Int. Symp. Saf. Secur. Rescue Robot., pp. 172-178, 2017. https://doi.org/10.1109/SSRR.2017.8088159
- [8] T. Matsuzawa et al., “Moving onto high steps for a four-limbed robot with torso contact,” 2019 IEEE/RSJ Int. Conf. Intell. Robots Syst., pp. 6324-6331, 2019. https://doi.org/10.1109/IROS40897.2019.8967833
- [9] S. Jordan et al., “State-of-the-art technologies for UAV inspections,” IET Radar Sonar Navig., Vol.12, No.2, pp. 151-164, 2018. https://doi.org/10.1049/iet-rsn.2017.0251
- [10] K.-U. Scholl, V. Kepplin, K, Berns, and R. Dillmann, “Controlling a multi-joint robot for autonomous sewer inspection,” IEEE Int. Conf. Robot. Autom., Vol.2, pp. 1701-1706, 2000. https://doi.org/10.1109/ROBOT.2000.844841
- [11] H. Streich and O. Adria, “Software approach for the autonomous inspection robot MAKRO,” IEEE Int. Conf. Robot. Autom., Vol.4, pp. 3411-3416, 2004. https://doi.org/10.1109/ROBOT.2004.1308781
- [12] S. A. Fjerdingen, P. Liljebäck, and A. A. Transeth, “A snake-like robot for internal inspection of complex pipe structures (PIKo),” IEEE/RSJ Int. Conf. Intell. Robots Syst., pp. 5665-5671, 2009. https://doi.org/10.1109/IROS.2009.5354751
- [13] H. Sawabe, M. Nakajima, M. Tanaka, K. Tanaka, and F. Matsuno, “Control of an articulated wheeled mobile robot in pipes,” Adv. Robot., Vol.33, No.20, pp. 1072-1086, 2019. https://doi.org/10.1080/01691864.2019.1666737
- [14] S. Hirose and A. Morishima, “Design and control of a mobile robot with an articulated body,” Int. J. Robot. Res., Vol.9, No.2, pp. 99-114, 1990. https://doi.org/10.1177/027836499000900208
- [15] S. Hirose, E. F. Fukushima, and S. Tsukagoshi, “Basic steering control methods for the articulated body mobile robot,” IEEE Control Syst. Mag., Vol.15, No.1, pp. 5-14, 1995. https://doi.org/10.1109/37.341858
- [16] T. Kamegawa, T. Yamasaki, H. Igarashi, and F. Matsuno, “Development of the snake-like rescue robot ‘kohga’,” IEEE Int. Conf. Robot. Autom., pp. 5081-5086, 2004. https://doi.org/10.1109/ROBOT.2004.1302523
- [17] M. Arai, Y. Tanaka, S. Hirose, H. Kuwahara, and S. Tsukui, “Development of ‘Souryu-IV’ and ‘Souryu-V:’ Serially connected crawler vehicles for in-rubble searching operations,” J. Field Robot., Vol.25, Nos.1-2, pp. 31-65, 2008. https://doi.org/10.1002/rob.20229
- [18] J. Borenstein, M. Hansen, and A. Borrell, “The OmniTread OT-4 serpentine robot–Design and performance,” J. Field Robot., Vol.24, No.7, pp. 601-621, 2007. https://doi.org/10.1002/rob.20196
- [19] M. Tanaka, M. Nakajima, Y. Suzuki, and K. Tanaka, “Development and control of articulated mobile robot for climbing steep stairs,” IEEE/ASME Trans. Mechatron., Vol.23, No.2, pp. 531-541, 2018. https://doi.org/10.1109/TMECH.2018.2792013
- [20] M. Tanaka, K. Tadakuma, M. Nakajima, and M. Fujita, “Task-space control of articulated mobile robots with a soft gripper for operations,” IEEE Trans. Robot., Vol.35, No.1, pp. 135-146, 2019. https://doi.org/10.1109/TRO.2018.2878361
- [21] M. Tanaka et al., “Development and field test of the articulated mobile robot T2 Snake-4 for plant disaster prevention,” Adv. Robot., Vol.34, No.2, pp. 70-88, 2020. https://doi.org/10.1080/01691864.2019.1680316
- [22] C. W. Chin, M. Nakajima, K. Furuike, K. Kon, and M. Tanaka, “Development and control of an articulated mobile robot T2 snake-4.2 for plant disaster prevention – Development of M2 arm and C-hand,” Adv. Robot., Vol.36, No.21, pp. 1134-1155, 2022. https://doi.org/10.1080/01691864.2022.2138540
- [23] M. Tanaka, K. Kon, and K. Tanaka, “Range-sensor-based semiautonomous whole-body collision avoidance of a snake robot,” IEEE Trans. Control Syst. Technol., Vol.23, No.5, pp. 1927-1934, 2015. https://doi.org/10.1109/TCST.2014.2382578
- [24] M. Tanaka, M. Nakajima, and K. Tanaka, “Smooth control of an articulated mobile robot with switching constraints,” Adv. Robot., Vol.30, No.1, pp. 29-40, 2016. https://doi.org/10.1080/01691864.2015.1102646
- [25] G. Granosik, “Hypermobile robots – The survey,” J. Intell. Robot. Syst., Vol.75, No.1, pp. 147-169, 2014. https://doi.org/10.1007/s10846-013-9985-5
- [26] B. Murugendran, A. A. Transeth, and S. A. Fjerdingen, “Modeling and path-following for a snake robot with active wheels,” 2009 IEEE/RSJ Int. Conf. Intell. Robots Syst., pp. 3643-3650, 2009. https://doi.org/10.1109/IROS.2009.5353886
- [27] L. Pfotzer, S. Klemm, A. Roennau, J. M. Zöllner, and R. Dillmann, “Autonomous navigation for reconfigurable snake-like robots in challenging, unknown environments,” Robot. Auton. Syst., Vol.89, pp. 123-135, 2017. https://doi.org/10.1016/j.robot.2016.11.010
- [28] H. Yamada and S. Hirose, “Development of practical 3-dimensional active cord mechanism ACM-R4,” J. Robot. Mechatron., Vol.18, No.3, pp. 305-311, 2006. https://doi.org/10.20965/jrm.2006.p0305
- [29] H. Yamada, S. Takaoka, and S. Hirose, “A snake-like robot for real-world inspection applications (the design and control of a practical active cord mechanism),” Adv. Robot., Vol.27, No.1, pp. 47-60, 2013. https://doi.org/10.1080/01691864.2013.752318
- [30] K. Kouno, H. Yamada, and S. Hirose, “Development of active-joint active-wheel high traversability snake-like robot ACM-R4.2,” J. Robot. Mechatron., Vol.25, No.3, pp. 559-566, 2013. https://doi.org/10.20965/jrm.2013.p0559
- [31] R. Ueda, T. Arai, K. Sakamoto, T. Kikuchi, and S. Kamiya, “Expansion resetting for recovery from fatal error in Monte Carlo localization – Comparison with sensor resetting methods,” 2004 IEEE/RSJ Int. Conf. Intell. Robots Syst., Vol.3, pp. 2481-2486, 2004. https://doi.org/10.1109/IROS.2004.1389781
- [32] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to collision avoidance,” IEEE Robot. Autom. Mag., Vol.4, No.1, pp. 23-33, 1997. https://doi.org/10.1109/100.580977
- [33] H. Komura, H. Yamada, and S. Hirose, “Development of snake-like robot ACM-R8 with large and mono-tread wheel,” Adv. Robot., Vol.29, No.17, pp. 1081-1094, 2015. https://doi.org/10.1080/01691864.2014.971054
- [34] F. Matsuno and K. Mogi, “Redundancy controllable system and control of snake robots based on kinematic model,” Proc. 39th IEEE Conf. Decis. Control, Vol.5, pp. 4791-4796, 2000. https://doi.org/10.1109/CDC.2001.914686
- [35] M. Tanaka and K. Tanaka, “Shape control of a snake robot with joint limit and self-collision avoidance,” IEEE Trans. Control Syst. Technol., Vol.25, No.4, pp. 1441-1448, 2017. https://doi.org/10.1109/TCST.2016.2614832
- [36] Y. Nakamura, H. Hanafusa, and T. Yoshikawa, “Task-priority based redundancy control of robot manipulators,” Int. J. Robot. Res., Vol.6, No.2, pp. 3-15, 1987. https://doi.org/10.1177/027836498700600201
- [37] M. Tanaka, M. Nakajima, R. Ariizumi, and K. Tanaka, “Three-dimensional steering for an articulated mobile robot with prismatic joints with consideration of hardware limitations,” Adv. Robot., Vol.34, No.11, pp. 767-779, 2020. https://doi.org/10.1080/01691864.2020.1753568
- [38] M. Nakajima, S. Fukumura, K. Tanaka, and M. Tanaka, “Local body shape control of an articulated mobile robot and an application for recovery from a stuck state,” Adv. Robot., Vol.36, No.10, pp. 488-500, 2022. https://doi.org/10.1080/01691864.2022.2063036
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.