single-rb.php

JRM Vol.33 No.3 pp. 572-581
doi: 10.20965/jrm.2021.p0572
(2021)

Paper:

A Pilot Study of the Effects of Human Intervention on Canine Group Movement Behavior

Miho Nagasawa*, Satomi Kuramochi*, Azumi Hamamoto*, Toshitaka Yamakawa**, and Takefumi Kikusui*

*Department of Animal Science and Biotechnology, Azabu University
1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan

**Faculty of Advanced Science and Technology, Kumamoto University
2-39-1 Kurokami, Chuo-ku, Kumamoto-shi, Kumamoto 860-8555, Japan

Received:
January 8, 2021
Accepted:
May 13, 2021
Published:
June 20, 2021
Keywords:
dog, group moving behavior, GPS
Abstract
A Pilot Study of the Effects of Human Intervention on Canine Group Movement Behavior

A scene of experiment and human and dogs' trajectory

Dogs are the oldest domesticated animals. The process of domestication of dogs is still unclear; however, they have established themselves as human partners and are sometimes more cooperative with humans than their conspecifics. In this study, to determine the effect of affiliative human presence on group behavior in dogs, we conducted short-time trials analyzing dog group movements. There was a hierarchical relationship in which juvenile dogs were aware of adult dogs, and adult dogs were aware of human movements. We also found that the age of the juvenile dog and the characteristics of their mothers may affect the movement behavior of juvenile dogs.

Cite this article as:
Miho Nagasawa, Satomi Kuramochi, Azumi Hamamoto, Toshitaka Yamakawa, and Takefumi Kikusui, “A Pilot Study of the Effects of Human Intervention on Canine Group Movement Behavior,” J. Robot. Mechatron., Vol.33, No.3, pp. 572-581, 2021.
Data files:
References
  1. [1] G. D. Wang et al., “Out of southern East Asia: the natural history of domestic dogs across the world,” Cell Res, Vol.26, pp. 21-33, doi: 10.1038/cr.2015.147, 2016.
  2. [2] E. Friedmann, A. H. Katcher, J. J. Lynch, and S. A. Thomas, “Animal companions and one-year survival of patients after discharge from a coronary care unit,” Public Health Rep., Vol.95, pp. 307-312, 1980.
  3. [3] M. M. Baun, N. Bergstrom, N. F. Langston, and L. Thoma, “Physiological effects of human/companion animal bonding,” Nurs. Res., Vol.33, pp. 126-129, 1984.
  4. [4] J. M. Siegel, “Stressful life events and use of physician services among the elderly: the moderating role of pet ownership,” J. Pers. Soc. Psychol., Vol.58, pp. 1081-1086, doi: 10.1037//0022-3514.58.6.1081, 1990.
  5. [5] B. Hare, M. Brown, C. Williamson, and M. Tomasello, “The domestication of social cognition in dogs,” Science, Vol.298, pp. 1634-1636, doi: 10.1126/science.1072702, 2002.
  6. [6] Á. Miklósi, E, Kubinyi, J. Topál, M. Gácsi, Z. Virányi, and V. Csányi, “A simple reason for a big difference: wolves do not look back at humans, but dogs do,” Curr. Biol., Vol.13, pp. 763-766, doi: 10.1016/s0960-9822(03)00263-x, 2003.
  7. [7] M. Nagasawa, T. Kikusui, T. Onaka, and M. Ohta, “Dog’s gaze at its owner increases owner’s urinary oxytocin during social interaction,” Horm. Behav., Vol.55, pp. 434-441, doi: 10.1016/j.yhbeh.2008.12.002, 2009.
  8. [8] M. Nagasawa, S. Mitsui, S. En, N. Ohtani, M. Ohta, Y. Sakuma, T. Onaka, K. Mogi, and T. Kikusui, “Oxytocin-gaze positive loop and the coevolution of human-dog bonds,” Science, Vol.348, pp. 333-336, doi: 10.1016/j.yhbeh.2008.12.002, 2015.
  9. [9] B. Hare and M. Tomasello, “Human-like social skills in dogs?,” Trends Cogn. Sci., Vol.9, pp. 439-444, doi: 10.1016/j.tics.2005.07.003, 2005.
  10. [10] K. Ohno et al., “Cyber-Enhanced Rescue Canine,” S. Tadokoro (Ed.), “Disaster Robotics: Results from the ImPACT Tough Robotics Challenge,” Cham: Springer Int. Publishing, pp. 143-193, doi: 10.1007/978-3-030-05321-5_4, 2019.
  11. [11] K. Nakagawa, R. Matsumura, and M. Shiomi, “Effect of Robot’s Play-Biting in Non-Verbal Communication,” J. Robot. Mechatron., Vol.32, No.1, pp. 86-96, doi: 10.20965/jrm.2020.p0086, 2020.
  12. [12] T. Kikusui, M. Nagasawa, K. Nomoto, S. Kuse-Arata, and K. Mogi, “Endocrine regulations in human-dog coexistence through domestication,” Trends Endocrinol. Metab., Vol.30, pp. 793-806, doi: 10.1016/j.tem.2019.09.002, 2019.
  13. [13] P. Savolainen, Y. Zhang, J. Luo, J. Lundeberg, and T. Leitner, “Genetic evidence for an East Asian origin of domestic dogs,” Science, Vol.298, p. 1610, doi: 10.1126/science.1073906, 2002.
  14. [14] H. G. Parker et al., “Genetic structure of the purebred domestic dog,” Science, Vol.304, pp. 1160-1164, doi: 10.1126/science.1097406, 2004.
  15. [15] B. M. Vonholdt et al., “Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication,” Nature, Vol.464, pp. 898-902, doi: 10.1038/nature08837, 2010.
  16. [16] A. R. Perri et al., “Dog domestication and the dual dispersal of people and dogs into the Americas,” Proc. Natl. Acad. Sci. U.S.A., Vol.118, e2010083118, doi: 10.1073/pnas.2010083118, 2021.
  17. [17] A. H. Freedman et al., “Genome sequencing highlights the dynamic early history of dogs,” PLoS Genet., Vol.10, e1004016, doi: 10.1371/journal.pgen.1004016, 2014.
  18. [18] L. D. Mech, “Alpha status, dominance, and division of labor in wolf packs,” Can. J. Zool., Vol.77, pp. 1196-1203, doi: 10.1139/z99-099, 1999.
  19. [19] J. M. Packard, “Wolf behaviour: reproductive, social and intelligent,” L. D. Mech and L. Boitani (Eds.), “Wolves: behavior, ecology, and conservation,” Chicago: University of Chicago Press, pp. 35-65, doi: 10.7208/9780226516981-006, 2003.
  20. [20] S. Marshall-Pescini, S. Cafazzo, Z. Virányi, and F. Range, “Integrating social ecology in explanations of wolf-dog behavioral differences,” Curr. Opin. Behav. Sci., Vol.16, pp. 80-86, doi: 10.1016/j.cobeha.2017.05.002, 2017.
  21. [21] L. Boitani, F. Francisci, P. Ciucci, and G. Andreoli, “The ecology and behavior of feral dogs: a case study from central Italy,” J. Serpell (Ed.), “The domestic dog: Its evolution, behavior and interaction with people,” Cambridge: Cambridge University Press, pp. 342-368, 2017.
  22. [22] S. Marshall-Pescini, J. F. L. Schwarz, I. Kostelnik, Z. Virányi, and F. Range, “Importance of a species’ socioecology: Wolves outperform dogs in a conspecific cooperation task,” Proc. Natl. Acad. Sci. U.S.A., Vol.114, pp. 11793-11798, doi: 10.1073/pnas.1709027114, 2017.
  23. [23] M. Germar, A. Sultan, J. Kaminski, and A. Mojzisch, “Dogs (Canis familiaris) stick to what they have learned rather than conform to their conspecifics’ behavior,” PLoS One, Vol.13, e0194808, doi: 10.1371/journal.pone.0194808, 2018.
  24. [24] Z. Ákos, R. Beck, M. Nagy, T. Vicsek, and E. Kubinyi, “Leadership and path characteristics during walks are linked to dominance order and individual traits in dogs,” PLoS Comput. Biol., Vol.10, e1003446, doi: 10.1371/journal.pcbi.1003446, 2014.
  25. [25] M. Nagasawa, K. Mogi, H. Ohtsuki, and T. Kikusui, “Familiarity with humans affect dogs’ tendencies to follow human majority groups,” Sci. Rep., Vol.10, 7119, doi: 10.1038/s41598-020-64058-5, 2020.
  26. [26] I. Merola, E. Prato-Previde, and S. Marshall-Pescini, “Social referencing in dog-owner dyads?,” Anim. Cogn., Vol.15, pp. 175-185, doi: 10.1007/s10071-011-0443-0, 2012.
  27. [27] B. V. G. Beaver, “Canine Behavior: Insights and Answers,” Elsevier Health Sciences, 2009.
  28. [28] J. Love et al., “JASP: Graphical statistical software for common statistical designs,” J. Stat. Softw., Vol.88, i02, doi: 10.18637/jss.v088.i02, 2019.
  29. [29] J. Serpell, D. L. Duffy, and J. A. Jagoe, “Becoming a dog: Early experience and the development of behavior,” J. Serpell (Ed.), “The domestic dog: Its evolution, behavior and interaction with people,” Cambridge: Cambridge University Press, pp. 93-117, 2017.
  30. [30] J. C. Fentress, “Observations on the behavioral development of a hand-reared male timber wolf,” Am. Zool., Vol.7, pp. 339-351, doi: 10.1093/icb/7.2.339, 1967.
  31. [31] M. Fox, “Behaviour of wolves, dogs and related canids,” New York: Harper & Row, 1971.
  32. [32] L. D. Mech, “The wolf: the ecology and behavior of an endangered species,” New York: Natural history Press, 1970.
  33. [33] K. Mogi, M. Nagasawa, and T. Kikusui, “Developmental consequences and biological significance of mother-infant bonding,” Prog. Neuropsychopharmacol. Biol. Psychiatry, Vol.35, pp. 1232-1241, doi: 10.1016/j.pnpbp.2010.08.024, 2011.
  34. [34] K. J. Parker and D. Maestripieri, “Identifying key features of early stressful experiences that produce stress vulnerability and resilience in primates,” Neurosci. Biobehav. Rev., Vol.35, pp. 1466-1483, doi: 10.1016/j.neubiorev.2010.09.003, 2011.
  35. [35] D. Francis, J. Diorio, D. Liu, and M. J. Meaney, “Nongenomic transmission across generations of maternal behavior and stress responses in the rat,” Science, Vol.286, pp. 1155-1158, doi: 10.1126/science.286.5442.1155, 1999.
  36. [36] P. Foyer, E. Wilsson, and P. Jensen, “Levels of maternal care in dogs affect adult offspring temperament,” Sci. Rep., Vol.6, pp. 1-8, doi: 10.1038/srep19253, 2016.
  37. [37] G. Guardini, C. Mariti, J. Bowen, J. Fatjó, S. Ruzzante, A. Martorell, C. Sighieri, and A. Gazzano, “Influence of morning maternal care on the behavioural responses of 8-week-old Beagle puppies to new environmental and social stimuli,” Appl. Anim. Behav. Sci., Vol.181, pp. 137-144, doi: 10.1016/j.applanim.2016.05.006, 2016.
  38. [38] E. E. Bray, M. D. Sammel, D. L. Cheney, J. A. Serpell, and R. M. Seyfarth, “Effects of maternal investment, temperament, and cognition on guide dog success,” Proc. Natl. Acad. Sci. U.S.A., Vol.114, pp. 9128-9133, doi: 10.1073/pnas.1704303114, 2017.
  39. [39] L. Asher, G. C. W. England, R. Sommerville, and N. D. Harvey, “Teenage dogs? Evidence for adolescent-phase conflict behaviour and an association between attachment to humans and pubertal timing in the domestic dog,” Biol. Lett., Vol.16, 20200097, doi: 10.1098/rsbl.2020.0097, 2020.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Aug. 03, 2021