single-rb.php

JRM Vol.37 No.1 pp. 114-122
doi: 10.20965/jrm.2025.p0114
(2025)

Paper:

Comparison of Position Control Performance in Double Air Chambers Pneumatic Artificial Muscle

Naoki Saito* ORCID Icon, Toshiyuki Satoh** ORCID Icon, and Norihiko Saga*** ORCID Icon

*Akita Prefectural University
84-4 Ebinokuchi, Tsuchiya, Yurihonjo, Akita 015-0055, Japan

**Hirosaki University
3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan

***Kwansei Gakuin University
2-1 Gakuen, Sanda, Hyogo 669-1337, Japan

Received:
July 31, 2024
Accepted:
January 21, 2025
Published:
February 20, 2025
Keywords:
pneumatics, pneumatic artificial muscle, position control, passive softness
Abstract

This paper proposes two position control methods for a double air chambers pneumatic artificial muscle (W-PAM) developed to improve the hysteresis characteristics of the rubber-less artificial muscle and confirms their characteristics and usefulness. The proposed control methods are the external pressure-regulated position feedback control and the internal pressure-regulated position feedback control. Of the two air chambers in the W-PAM, the air chamber regulated by the feedback control is different. The steady-state characteristic and frequency characteristics of these controls were compared, and it was experimentally confirmed that the adjusted position feedback control is superior in terms of position control performance. On the other hand, we confirmed that external pressure-regulated position feedback control can express passive stiffness, which is an important characteristic of pneumatic artificial muscles. These results indicate that the W-PAM is a useful actuator for human coexistence systems, because it can express both positional control performance and softness by using different control methods depending on the application.

Structure of the W-PAM

Structure of the W-PAM

Cite this article as:
N. Saito, T. Satoh, and N. Saga, “Comparison of Position Control Performance in Double Air Chambers Pneumatic Artificial Muscle,” J. Robot. Mechatron., Vol.37 No.1, pp. 114-122, 2025.
Data files:
References
  1. [1] T. Nakamura, “Fluid-driven soft actuators for soft robots,” J. Robot. Mechatron., Vol.36, No.2, pp. 251-259, 2024. https://doi.org/10.20965/jrm.2024.p0251
  2. [2] P. Polygerinos et al., “Soft robotics: Review of fluid-driven intrinsically soft devices; Manufacturing, sensing, control, and applications in human-robot interaction,” Adv. Eng. Mater., Vol.19, No.12, Article No.1700016, 2017. https://doi.org/10.1002/adem.201700016
  3. [3] B. Tondu, S. Ippolito, J. Guiochet, and A. Daidie, “A seven-degrees-of-freedom robot-arm driven by pneumatic artificial muscles for humanoid robots,” Int. J. Rob. Res., Vol.24, No.4, pp. 257-274, 2005. https://doi.org/10.1177/0278364905052437
  4. [4] P. Ohta et al., “Design of a lightweight soft robotic arm using pneumatic artificial muscles and inflatable sleeves,” Soft Robot, Vol.5, No.2, pp. 204-215, 2018. https://doi.org/10.1089/soro.2017.0044
  5. [5] R. Sawahashi, J. Komatsu, R. Nishihama, M. Okui, and T. Nakamura, “Development of a bimanual wearable force feedback device with pneumatic artificial muscles, MR fluid brakes, and sensibility evaluation based on pushing motion,” J. Robot. Mechatron., Vol.35, No.1, pp. 180-193, 2023. https://doi.org/10.20965/jrm.2023.p0180
  6. [6] T. Noritsugu, M. Takaiwa, and D. Sasaki, “Development of power assist wear using pneumatic rubber artificial muscles,” J. Robot. Mechatron., Vol.21, No.5, pp. 607-613, 2009. https://doi.org/10.20965/jrm.2009.p0607
  7. [7] G. Andrikopoulos, G. Nikolakopoulos, and S. Manesis, “A survey on applications of pneumatic artificial muscles,” 19th Mediterranean Conf. Cont. & Autom. (MED), pp. 1439-1446, 2011. https://doi.org/10.1109/med.2011.5982983
  8. [8] F. Daerden, D. Lefeber, B. Verrelst, and R. van Ham, “Pleated pneumatic artificial muscles: compliant robotic actuators,” Proc. 2001 IEEE/RSJ Int. Conf. Intel. Rob. Sys., Vol.4, pp. 1958-1963, 2001. https://doi.org/10.1109/IROS.2001.976360
  9. [9] B. Jamil, N. Oh, J.-G. Lee, H. Lee, and H. Rodrigue, “A review and comparison of linear pneumatic artificial muscles,” Int. J. Prec. Eng. Manuf.—Green Tech., Vol.11, No.1, pp. 277-289, 2024. https://doi.org/10.1007/s40684-023-00531-6
  10. [10] B. Tondu and P. Lopez, “The McKibben muscle and its use in actuating robot-arms showing similarities with human arm behaviour,” Indust. Rob., Vol.24, Issue 6, pp. 432-439, 1997. https://doi.org/10.1108/01439919710192563
  11. [11] T. Nozaki and T. Noritsugu, “Motion analysis of McKibben type pneumatic rubber artificial muscle with finite element method,” Int. J. Automation Technol., Vol.8, No.2, pp. 147-158, 2014. https://doi.org/10.20965/ijat.2014.p0147
  12. [12] F. Durante, M. G. Antonelli, P. B. Zobel, and A. Raparelli, “Development of a straight fibers pneumatic muscle,” Int. J. Automation Technol., Vol.12, No.3, pp. 413-423, 2018. https://doi.org/10.20965/ijat.2018.p0413
  13. [13] A. Kojima, M. Okui, I. Hisamichi, T. Tsuji, and T. Nakamura, “Straight-fiber-type artificial muscle deformation under pressurization,” IEEE Rob. Autom. Letters, Vol.4, No.3, pp. 2592-2598, 2019. https://doi.org/10.1109/LRA.2019.2902016
  14. [14] T. Hassan, M. Cianchetti, M. Moatamedi, B. Mazzolai, C. Laschi, and P. Dario, “Finite-element modeling and design of a pneumatic braided muscle actuator with multifunctional capabilities,” IEEE/ASME Trans. Mechatron., Vol.24, No.1, pp. 109-119, 2019. https://doi.org/10.1109/TMECH.2018.2877125
  15. [15] H. Zheng and X. Shen, “Double-acting sleeve muscle actuator for bio-robotic systems,” Actuators, Vol.2, No.4, pp. 129-144, 2013. https://doi.org/10.3390/act2040129
  16. [16] H. Al-Fahaam, S. Nefti-Meziani, T. Theodoridis, and S. Davis, “The design and mathematical model of a novel variable stiffness extensor-contractor pneumatic artificial muscle,” Soft Robot, Vol.5, No.5, pp. 576-591, 2018. https://doi.org/10.1089/soro.2018.0010
  17. [17] T. Sato, N. Saito, T. Ogasawara, and T. Sato, “Development of rubberless artificial muscle and fundamental characteristics,” 37th Ann. Conf. IEEE Indust. Elec. Soc., pp. 2124-2129, 2011. https://doi.org/10.1109/IECON.2011.6119636
  18. [18] N. Saito and T. Satoh, “Structure of a rubberless artificial muscle and evaluation of a lifetime,” 42nd Ann. Conf. IEEE Indust. Elec. Soc., pp. 648-653, 2016. https://doi.org/10.1109/IECON.2016.7793383
  19. [19] N. Saito, D. Furukawa, T. Satoh, and N. Saga, “Development of semi-crouching assistive device using pneumatic artificial muscle,” J. Robot. Mechatron., Vol.32, No.5, pp. 885-893, 2020. https://doi.org/10.20965/jrm.2020.p0885
  20. [20] N. Saito, T. Satoh, and N. Saga, “Effects on knee joint force from a body weight load reduction system driven by rubber-less artificial muscle,” Indust. Rob., Vol.46, Issue 5, pp. 642-649, 2019. https://doi.org/10.1108/IR-11-2018-0224
  21. [21] N. Saito and T. Satoh, “Fundamental development and evaluation of body weight load reduction system driven by rubberless artificial muscle,” 15th Int. Conf. Cont., Autom., Rob. and Vision (ICARCV), pp. 1579-1584, 2018. https://doi.org/10.1109/ICARCV.2018.8581193
  22. [22] N. Saito, T. Satoh, and N. Saga, “Double air chambers pneumatic artificial muscle and non-hysteresis position control,” Actuators, Vol.13, No.8, Article No.282, 2024. https://doi.org/10.3390/act13080282
  23. [23] N. Saito, T. Sato, T. Ogasawara, R. Takahashi, and T. Sato, “Mechanical equilibrium model of rubberless artificial muscle and application to position control of antagonistic drive system,” Indust. Rob., Vol.40, Issue 4, pp. 347-354, 2013. https://doi.org/10.1108/01439911311320859
  24. [24] C.-P. Chou and B. Hannaford, “Measurement and modeling of McKibben pneumatic artificial muscles,” IEEE Trans. Rob. Autom., Vol.12, No.1, pp. 90-102, 1996. https://doi.org/10.1109/70.481753

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Mar. 04, 2025