single-rb.php

JRM Vol.35 No.6 pp. 1419-1434
doi: 10.20965/jrm.2023.p1419
(2023)

Paper:

Practical Implementation of Visual Navigation Based on Semantic Segmentation for Human-Centric Environments

Miho Adachi* ORCID Icon, Kazufumi Honda*, Junfeng Xue*, Hiroaki Sudo*, Yuriko Ueda*, Yuki Yuda*, Marin Wada*, and Ryusuke Miyamoto** ORCID Icon

*Department of Computer Science, Graduate School of Science and Technology, Meiji University
1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan

**Department of Computer Science, School of Science and Technology, Meiji University
1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan

Received:
May 20, 2023
Accepted:
October 11, 2023
Published:
December 20, 2023
Keywords:
visual navigation, semantic segmentation, Virtual LiDAR, road following, obstacle avoidance
Abstract

This study focuses on visual navigation methods for autonomous mobile robots based on semantic segmentation results. The challenge is to perform the expected actions without being affected by the presence of pedestrians. Therefore, we implemented a semantics-based localization method that is not affected by dynamic obstacles and a direction change method at intersections that functions even with coarse-grain localization results. The proposed method was evaluated through driving experiments in the Tsukuba Challenge 2022, where a 290 m run including 10 intersections was achieved in the confirmation run section.

Visual navigation based on semantic segmentation

Visual navigation based on semantic segmentation

Cite this article as:
M. Adachi, K. Honda, J. Xue, H. Sudo, Y. Ueda, Y. Yuda, M. Wada, and R. Miyamoto, “Practical Implementation of Visual Navigation Based on Semantic Segmentation for Human-Centric Environments,” J. Robot. Mechatron., Vol.35 No.6, pp. 1419-1434, 2023.
Data files:
References
  1. [1] K. Takahashi, J. Arima, T. Hayata, Y. Nagai, N. Sugiura, R. Fukatsu, W. Yoshiuchi, and Y. Kuroda, “Development of Edge-Node Map Based Navigation System Without Requirement of Prior Sensor Data Collection,” J. Robot. Mechatron., Vol.32, No.6, pp. 1112-1120, 2020. https://doi.org/10.20965/jrm.2020.p1112
  2. [2] T. Kanade, C. Thorpe, and W. Whittaker, “Autonomous Land Vehicle Project at CMU,” Proc. of ACM Fourteenth Annual Conf. on Computer Science, pp. 71-80, 1986. https://doi.org/10.1145/324634.325197
  3. [3] R. Wallace, K. Matsuzaki, Y. Goto, J. Crisman, J. Webb, and T. Kanade, “Progress in robot road-following,” Proc. of IEEE Int. Conf. on Robotics and Automation, Vol.3, pp. 1615-1621, 1986. https://doi.org/10.1109/ROBOT.1986.1087503
  4. [4] R. Miyamoto, Y. Nakamura, M. Adachi, T. Nakajima, H. Ishida, K. Kojima, R. Aoki, T. Oki, and S. Kobayashi, “Vision-Based Road-Following Using Results of Semantic Segmentation for Autonomous Navigation,” Proc. of Int. Conf. on Consumer Electronics in Berlin, pp. 174-179, 2019. https://doi.org/10.1109/ICCE-Berlin47944.2019.8966198
  5. [5] M. Adachi, S. Shatari, and R. Miyamoto, “Visual Navigation Using a Webcam Based on Semantic Segmentation for Indoor Robot,” Proc. of Int. Conf. on Signal Image Technology and Internet Based Systems, pp. 15-21, 2019. https://doi.org/10.1109/SITIS.2019.00015
  6. [6] R. Miyamoto, M. Adachi, Y. Nakamura, T. Nakajima, H. Ishida, and S. Kobayashi, “Accuracy Improvement of Semantic Segmentation Using Appropriate Datasets for Robot Navigation,” Proc. of Int. Conf. on Control, Decision and Information Technologies, pp. 1610-1615, 2019. https://doi.org/10.1109/CoDIT.2019.8820616
  7. [7] H. Ishida, K. Matsutani, M. Adachi, S. Kobayashi, and R. Miyamoto, “Intersection Recognition Using Results of Semantic Segmentation for Visual Navigation,” Proc. of Int. Conf. on Computer Vision Systems, pp. 153-163, 2019. https://doi.org/10.1007/978-3-030-34995-0_15
  8. [8] R. Miyamoto, M. Adachi, H. Ishida, T. Watanabe, K. Matsutani, H. Komatsuzaki, S. Sakata, R. Yokota, and S. Kobayashi, “Visual Navigation Based on Semantic Segmentation Using Only a Monocular Camera as an External Sensor,” J. Robot. Mechatron., Vol.32, No.6, pp. 1137-1153, 2020. https://doi.org/10.20965/jrm.2020.p1137
  9. [9] H. Zhou, D. Greenwood, and S. Taylor, “Self-Supervised Monocular Depth Estimation with Internal Feature Fusion,” British Machine Vision Conf. (BMVC), 2021.
  10. [10] M. Adachi, J. Xue, K. Honda, M. Wada, and R. Miyamoto, “Improvement of Visual Odometry Based on Robust Feature Extraction Considering Semantics,” Proc. of Int. Conf. on Control, Decision and Information Technologies, 2023. https://doi.org/10.1109/CODIT58514.2023.10284345
  11. [11] M. Adachi, K. Honda, and R. Miyamoto, “Turning at Intersections Using Virtual LiDAR Signals Obtained from a Segmentation Result,” J. Robot. Mechatron., Vol.35, No.2, pp. 347-361, 2023. https://doi.org/10.20965/jrm.2023.p0347
  12. [12] D. S. Chaplot, D. Gandhi, A. Gupta, and R. Salakhutdinov, “Object Goal Navigation using Goal-Oriented Semantic Exploration,” Neural Information Processing Systems, 2020.
  13. [13] D. S. Chaplot, R. Salakhutdinov, A. Gupta, and S. Gupta, “Neural Topological SLAM for Visual Navigation,” Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR), 2020. https://doi.org/10.1109/CVPR42600.2020.01289
  14. [14] A. Amini, G. Rosman, S. Karaman, and D. Rus, “Variational End-to-End Navigation and Localization,” 2019 Int. Conf. on Robotics and Automation (ICRA), pp. 8958-8964, 2019. https://doi.org/10.1109/ICRA.2019.8793579
  15. [15] D. Shah, B. Eysenbach, G. Kahn, N. Rhinehart, and S. Levine, “ViNG: Learning Open-World Navigation with Visual Goals,” IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 13215-13222, 2021. https://doi.org/10.1109/ICRA48506.2021.9561936
  16. [16] T. Gervet, S. Chintala, D. Batra, J. Malik, and D. S. Chaplot, “Navigating to objects in the real world,” Science Robotics, Vol.8, No.79, Article No.eadf6991, 2023. https://doi.org/10.1126/scirobotics.adf6991
  17. [17] R. Fan, H. Wang, P. Cai, and M. Liu, “Sne-roadseg: Incorporating surface normal information into semantic segmentation for accurate freespace detection,” European Conf. on Computer Vision, pp. 340-356, 2020. https://doi.org/10.1007/978-3-030-58577-8_21
  18. [18] L. Tang, X. Ding, H. Yin, Y. Wang, and R. Xiong, “From one to many: Unsupervised traversable area segmentation in off-road environment,” 2017 IEEE Int. Conf. on Robotics and Biomimetics (ROBIO), pp. 787-792, 2017. https://doi.org/10.1109/ROBIO.2017.8324513
  19. [19] W. Kim and J. Seok, “Indoor Semantic Segmentation for Robot Navigating on Mobile,” 2018 Tenth Int. Conf. on Ubiquitous and Future Networks (ICUFN), pp. 22-25, 2018. https://doi.org/10.1109/ICUFN.2018.8436956
  20. [20] K. Viswanath, K. Singh, P. Jiang, P. Sujit, and S. Saripalli, “Offseg: A semantic segmentation framework for off-road driving,” 2021 IEEE 17th Int. Conf. on Automation Science and Engineering (CASE), pp. 354-359, 2021. https://doi.org/10.1109/CASE49439.2021.9551643
  21. [21] I. Ohya, A. Kosaka, and A. Kak, “Vision-based navigation by a mobile robot with obstacle avoidance using single-camera vision and ultrasonic sensing,” IEEE Trans. on Robotics and Automation, Vol.14, No.6, pp. 969-978, 1998. https://doi.org/10.1109/70.736780
  22. [22] M. Mancini, G. Costante, P. Valigi, and T. A. Ciarfuglia, “Fast robust monocular depth estimation for obstacle detection with fully convolutional networks,” 2016 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pp. 4296-4303, 2016. https://doi.org/10.1109/IROS.2016.7759632
  23. [23] K.-H. Chen and W.-H. Tsai, “Vision-based obstacle detection and avoidance for autonomous land vehicle navigation in outdoor roads,” Automation in Construction, Vol.10, No.1, pp. 1-25, 2000. https://doi.org/10.1016/S0926-5805(99)00010-2
  24. [24] L. Sun, K. Yang, X. Hu, W. Hu, and K. Wang, “Real-time fusion network for RGB-D semantic segmentation incorporating unexpected obstacle detection for road-driving images,” IEEE Robotics and Automation Letters, Vol.5, No.4, pp. 5558-5565, 2020. https://doi.org/10.1109/LRA.2020.3007457
  25. [25] T. Ohgushi, K. Horiguchi, and M. Yamanaka, “Road obstacle detection method based on an autoencoder with semantic segmentation,” Proc. of the Asian Conf. on Computer Vision, pp. 223-238, 2020. https://doi.org/10.1007/978-3-030-69544-6_14
  26. [26] C. Campos, R. Elvira, J. J. G. Rodríguez, J. M. M. Montiel, and J. D. Tardós, “ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual–Inertial, and Multimap SLAM,” IEEE Trans. on Robotics, Vol.37, No.6, pp. 1874-1890, 2021. https://doi.org/10.1109/TRO.2021.3075644
  27. [27] C. Forster, M. Pizzoli, and D. Scaramuzza, “SVO: Fast semi-direct monocular visual odometry,” 2014 IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 15-22, 2014. https://doi.org/10.1109/ICRA.2014.6906584
  28. [28] A. Rosinol, M. Abate, Y. Chang, and L. Carlone, “Kimera: An Open-Source Library for Real-Time Metric-Semantic Localization and Mapping,” 2020 IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 1689-1696, 2019. https://doi.org/10.1109/ICRA40945.2020.9196885
  29. [29] S. Hausler, S. Garg, M. Xu, M. Milford, and T. Fischer, “Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for Place Recognition,” Proc. of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition, pp. 14141-14152, 2021. https://doi.org/10.1109/CVPR46437.2021.01392
  30. [30] P.-E. Sarlin, D. DeTone, T. Malisiewicz, and A. Rabinovich, “SuperGlue: Learning Feature Matching with Graph Neural Networks,” Proc. of IEEE Conf. Comput. Vis. Pattern Recognit., pp. 4937-4946, 2020. https://doi.org/10.1109/CVPR42600.2020.00499
  31. [31] F. Beruny and J. R. d. Solar, “Topological Semantic Mapping and Localization in Urban Road Scenarios,” J. Intell. Robotics Syst., Vol.92, No.1, pp. 19-32, 2018. https://doi.org/10.1007/s10846-017-0744-x
  32. [32] R. C. Luo and W. Shih, “Autonomous Mobile Robot Intrinsic Navigation Based on Visual Topological Map,” 2018 IEEE 27th Int. Symposium on Industrial Electronics (ISIE), pp. 541-546, 2018. https://doi.org/10.1109/ISIE.2018.8433588
  33. [33] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing network,” Proc. of IEEE Conf. Comput. Vis. Pattern Recognit., pp. 6230-6239, 2017. https://doi.org/10.1109/CVPR.2017.660
  34. [34] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, and B. Schiele, “The Cityscapes Dataset for Semantic Urban Scene Understanding,” Proc. of IEEE Conf. Comput. Vis. Pattern Recognit., pp. 3213-3223, 2016. https://doi.org/10.1109/CVPR.2016.350
  35. [35] R. Itou, J. Morioka, M. Adachi, T. Imagawa, and R. Miyamoto, “A Study on Relations between Computational Cost and Estimation Accuracy of Semantic Segmentation,” IEICE Technical Report, Vol.122, pp. 86-91, 2022.
  36. [36] M. Adachi, H. Komatsuzaki, M. Wada, and R. Miyamoto, “Accuracy Improvement of Semantic Segmentation Trained with Data Generated from a 3D Model by Histogram Matching Using Suitable References,” 2022 IEEE Int. Conf. on Systems, Man, and Cybernetics (SMC), pp. 1180-1185, 2022. https://doi.org/10.1109/SMC53654.2022.9945583
  37. [37] Y. Ueda, M. Adachi, J. Morioka, M. Wada, and R. Miyamoto, “Data Augmentation for Semantic Segmentation Using a Real Image Dataset Captured Around the Tsukuba City Hall,” J. Robot. Mechatron., Vol.35, No.6, pp. 1450-1459, 2023. https://doi.org/10.20965/jrm.2023.p1450
  38. [38] M. Adachi and R. Miyamoto, “Model-Based Estimation of Road Direction in Urban Scenes Using Virtual LiDAR Signals,” 2020 IEEE Int. Conf. on Systems, Man, and Cybernetics (SMC 2020), pp. 4498-4503, 2020. https://doi.org/10.1109/SMC42975.2020.9282925
  39. [39] D. DeTone, T. Malisiewicz, and A. Rabinovich, “SuperPoint: Self-supervised interest point detection and description,” Proc. of IEEE Computer Society Conf. on Computer Vision and Pattern Recognition Workshop, pp. 224-236, 2018. https://doi.org/10.1109/CVPRW.2018.00060
  40. [40] J. Xu, Z. Xiong, and S. P. Bhattacharyya. “PIDNet: A Real-time Semantic Segmentation Network Inspired from PID Controller,” arXiv preprint, arXiv:2206.02066, 2022. https://doi.org/10.48550/ARXIV.2206.02066
  41. [41] H. Zhao, X. Qi, X. Shen, J. Shi, and J. Jia, “ICNet for Real-Time Semantic Segmentation on High-Resolution Images,” V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss (Eds.), Proc. of European Conf. on Computer Vision, pp. 418-434, 2018. https://doi.org/10.1007/978-3-030-01219-9_25

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Feb. 19, 2024