single-rb.php

JRM Vol.32 No.5 pp. 1010-1018
doi: 10.20965/jrm.2020.p1010
(2020)

Paper:

Active Cloth Fabricated by a Flat String Machine and its Application to a Safe Wheelchair System

Makoto Takada*, Shuichi Wakimoto*, Takero Oshikawa*, Takeji Ueda**, and Takefumi Kanda*

*Graduate School of Natural Science and Technology, Okayama University
3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan

**Energyfront Inc.
394-28 Uchio, Minami-ku, Okayama 701-0212, Japan

Received:
April 17, 2020
Accepted:
August 7, 2020
Published:
October 20, 2020
Keywords:
pneumatic artificial muscle, active cloth, safe wheelchair system, welfare apparatus
Abstract
Active Cloth Fabricated by a Flat String Machine and its Application to a Safe Wheelchair System

Active cloth and safe wheelchair system

In this study, a pneumatically contracting active cloth has been developed; its application is proposed for a safe sitting-posture recovery system for wheelchair users to avoid fall-related accidents. The active cloth consists of thin artificial muscles knitted via a flat string machine. The safe wheelchair system is configured with an active cloth and seating pressure sensor. The seating pressure sensor, located on the seating surface of the wheelchair, estimates the inclination of the upper body of the user; when this reaches an angle that is dangerous for falling from the wheelchair, the active cloth contracts to correct the posture of the upper body. In this paper, we clarify the fabrication process and fundamental characteristics of the active cloth and indicate its potential as a mechanical element for welfare apparatuses by demonstrating a safe wheelchair system.

Cite this article as:
M. Takada, S. Wakimoto, T. Oshikawa, T. Ueda, and T. Kanda, “Active Cloth Fabricated by a Flat String Machine and its Application to a Safe Wheelchair System,” J. Robot. Mechatron., Vol.32, No.5, pp. 1010-1018, 2020.
Data files:
References
  1. [1] A. T. Asbeck, R. J. Dyer, A. F. Larusson, and C. J. Walsh, “Biologically-inspired soft exosuit,” IEEE Int. Conf. Rehabil. Robot., pp. 1-8, doi: 10.1109/ICORR.2013.6650455, 2013.
  2. [2] T. Noritsugu, D. Sasaki, M. Kameda, A. Fukunaga, and M. Takaiwa, “Wearable power assist device for standing up motion using pneumatic rubber artificial muscles,” J. Robot. Mechatron., Vol.19, No.6, pp.619-628, doi: 10.20965/jrm.2007.p0619, 2007.
  3. [3] H. Kobayashi, T. Shiiba, and Y. Ishida, “Realization of all 7 motions for the upper limb by a muscle suit,” J. Robot. Mechatron., Vol.16, No.5, pp.504-512, doi: 10.20965/jrm.2004.p0504, 2004.
  4. [4] M. Wehner, B. Quinlivan, P. M. Aubin, E. Martinez-Villalpando, M. Baumann, L. Stirling, K. Holt, R. Wood, and C. Walsh, “A lightweight soft exosuit for gait assistance,” IEEE Int. Conf. Robot. Autom., pp. 3347-3354, doi: 10.1109/ICRA.2013.6631046, 2013.
  5. [5] T. Araie, U. Nishizawa, T. Ikeda, A. Kakimoto, and S. Toyama, “Evaluation of labor burden reduction achieved through wearing an agricultural power assist suit,” Int. J. Model. Optim., Vol.7, No.4, pp. 202-206, doi: 10.7763/IJMO.2017.V7.584, 2017.
  6. [6] I. Galiana, F. L. Hammond, R. D. Howe, and M. B. Popovic, “Wearable soft robotic device for post-stroke shoulder rehabilitation: Identifying misalignments,” IEEE Int. Conf. Intell. Robot. Syst., pp. 317-322, doi: 10.1109/IROS.2012.6385786, 2012.
  7. [7] C. Ishii and K.Yoshida, “Improvement of a Lightweight Power Assist Suit for Nursing Care,” Int. J. Eng. Tech., Vol.11, No.4, pp. 256-261, doi: 10.7763/IJET.2019.V11.1157, 2019.
  8. [8] H. Inose, K. Yokoyama, H. Imamura, I. Kikutani, and T. Nakamura, “Development of an endskeleton type power assist suit using pneumatic artificial muscles with amplification mechanism,” 41st Ann. Conf. IEEE Ind. Electr. Soc., pp. 4708-4713, doi: 10.1109/IECON.2015.7392835, 2015.
  9. [9] T. Doi, S. Wakimoto, K. Suzumori, and T. Kanda, “Research on bundle mechanism of thin McKibben artificial muscles,” JSME Conf. Robot. Mechatoroncs, 1P1-B03, doi: 10.1299/jsmermd.2015._1P1-B03_1, 2015 (in Japanese).
  10. [10] T. Abe, S. Koizumi, H. Nabae, G. Endo, K. Suzumori, N. Sato, M. Adachi, and F. Takamizawa, “Fabrication of “18 Weave” muscles and their application to soft power support suit for upper limbs using thin McKibben muscle,” IEEE Robot. Autom. Lett., Vol.4, No.3, doi: 10.1109/LRA.2019.2907433, 2019.
  11. [11] S. Koizumi, S. Kurumaya, H. Nabae, G. Endo, and K. Suzumori, “Braiding thin McKibben muscles to enhance their contracting abilities,” IEEE Robot. Autom. Lett., Vol.3, No.4, doi: 10.1109/LRA.2018.2851025, 2018.
  12. [12] Y. Mori, K. Katsumura, and K. Nagase, “Development of a pair of step-climbing unites for a manual wheelchair user,” Trans. Jpn. Soc. Mecha. Eng., Vol.80, No.820, doi: 10.1299/transjsme.2014dr0381, 2014 (in Japanese).
  13. [13] H. Tachiya, I. Sano, K. Okuno, Y. Miyazaki, and H. Yoshida, “Development of the upper body motion assist system using a parallel wire mechanism by evaluating the driving tensions,” Trans. Jpn. Soc. Mecha. Eng., Vol.73, No.727, pp. 185-192, doi: 10.1299/kikaic.73.833, 2007 (in Japanese).
  14. [14] T. Hanada and J. Koma, “Development of seating posture supporting device,” Saitama Industrial Technology Center, 2005 (in Japanese).
  15. [15] T. Shinki, T. Matsuoka, R. Ikeura, and N. Taguchi, “Development of positioning chair product system by automatic positioning evaluator,” Reports of the Mie Industrial Research Institute, 2003 (in Japanese).
  16. [16] S. Furukawa, S. Wakimoto, T. Kanda, and H. Hagihara, “A soft master-slave robot mimicking octopus arm structure using thin artificial muscles and wire encoders,” Actuators, Vol.8, No.2, doi: 10.3390/act8020040, 2019.
  17. [17] T. Doi, S. Wakimoto, K. Suzumori, and K. Mori, “Proposal of flexible robotic arm with thin McKibben actuators mimicking octopus arm structure,” IEEE Int. Conf. Intel. Robot. Syst., doi: 10.1109/IROS.2016.7759809, 2016.
  18. [18] Y. Sugano, H. Kim, and S. Kawamura, “Performance improvement of multi-axial force sensor using inflatable structure,” JSME Conf. Robot. Mechatronics, No.17-2, 1A1-I10, doi: 10.1299/jsmermd.2017.1A1-I10, 2017 (in Japanese).
  19. [19] R. Yamamoto, H. Kim, and S. Kawamura, “Force sensing model by internal pressure measurement of pneumatic bag,” JSME Conf. Robot. Mechatronics, No.18-2, 1P2-H11, doi: 10.1299/jsmermd.2018.1P2-H11, 2018 (in Japanese).
  20. [20] S. Mima, D. Sasaki, T. Noritsugu, and M. Takaiwa, “Development of seated position assist device constructed with layer type pneumatic actuators,” JSME Conf. Robot. Mechatronics, 2A2-I10, doi: 10.1299/jsmermd.2011._2A2-I10_1, 2011(in Japanese).

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Dec. 03, 2020