JRM Vol.31 No.6 pp. 926-933
doi: 10.20965/jrm.2019.p0926


Development of Birefringence Confocal Laser Scanning Microscope and its Application to Sample Measurements

Shinya Ohkubo

National Institute of Technology, Numazu College
3600 Ooka, Numazu, Shizuoka 410-8501, Japan

March 18, 2019
October 29, 2019
December 20, 2019
polarization, birefringence, confocal laser scanning microscope, retardation
Development of Birefringence Confocal Laser Scanning Microscope and its Application to Sample Measurements

Obtained retardation images of onion

A new laser microscope is developed to obtain depth-direction birefringence information of optically anisotropic samples, which cannot be obtained by a conventional polarization microscope. As a result, birefringence tomographic images are now available and the method should be helpful for sample evaluations.

Cite this article as:
S. Ohkubo, “Development of Birefringence Confocal Laser Scanning Microscope and its Application to Sample Measurements,” J. Robot. Mechatron., Vol.31, No.6, pp. 926-933, 2019.
Data files:
  1. [1] M. Kumagai, “Development of a 3D vision range sensor using equiphase light section method,” J. Robot. Mechatron., Vol.17, No.2, pp. 110-115, doi: 10.20965/jrm.2005.p0110, 2005.
  2. [2] A. Obara, X. Yang, and H. Oku, “Structured light field generated by two projectors for high-speed three dimensional measurement,” J. Robot. Mechatron., Vol.28, No.4, pp. 523-532, doi: 10.20965/jrm.2016.p0523, 2016.
  3. [3] H. Higuchi, H. Fujii, A. Taniguchi, M. Watanabe, A. Yamashita, and H. Asama, “3D measurement of large structure by multiple cameras and a ring laser,” J. Robot. Mechatron., Vol.31, No.2, pp. 251-262, doi: 10.20965/jrm.2019.p0251, 2019.
  4. [4] T. Tsuru, “Tilt-ellipsometry of object surface by specular reflection for three-dimensional shape measurement,” Optics Express, Vol.21, No.5, pp. 6625-6632, doi: 10.1364/OE.21.006625, 2013.
  5. [5] S. Ohkubo, “Observation of sample with the simplified mode birefringence optical microscope,” Proc. of Int. Symp. on Optomechatronics Technology (ISOT 2016), SS2-7, 2016.
  6. [6] E. Collett, “Field Guide to Polarization,” The Society of Photo-Optical Instrumentation Engineers, Society of Photo Optical, doi: 10.1117/3.626141, 2005.
  7. [7] D. H. Goldstein, “Polarized Light (Third Edition),” CRC Press, 2011.
  8. [8] J. Pawley, “Handbook of Biological Confocal Microscopy,” Springer, doi: 10.1007/978-0-387-45524-2, 1995.
  9. [9] R. A. Chipman, W. T. Lam, and G. Young, “Polarized Light and Optical Systems,” CRC Press, doi: 10.1201/9781351129121, 2018.
  10. [10] A. L. Gratiet, M. Dubreuil, S. Rivet, and Y. L. Grand, “Scanning Mueller polarimetric microscopy,” Opt. Lett., Vol.41, No.18, pp. 4336-4339, doi: 10.1364/OL.41.004336, 2016.
  11. [11] S. Y. Lu and R. A. Chipman, “Interpretation of Mueller matrix based on polar decomposition,” J. Opt. Soc. Am. A, Vol.13, No.5, pp. 1106-1113, doi: 10.1364/JOSAA.13.001106, 1996.
  12. [12] J. Wolfe and R. A. Chipman, “High speed imaging polarimeter,” Proc. of Optical Science and Technology, SPIE’s 48th Annual Meeting, Vol.5158, pp. 24-27, doi: 10.1117/12.504439, 2003.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Sep. 24, 2020