single-rb.php

JRM Vol.34 No.2 pp. 195-201
doi: 10.20965/jrm.2022.p0195
(2022)

Review:

Overview of the Kakenhi Grant-in-Aid for Scientific Research on Innovative Areas: Science of Soft Robots

Koichi Suzumori

Tokyo Institute of Technology
2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan

Received:
January 2, 2022
Accepted:
January 8, 2022
Published:
April 20, 2022
Keywords:
soft robot, soft robotics, Kakenhi, interdisciplinary
Abstract
Overview of the Kakenhi Grant-in-Aid for Scientific Research on Innovative Areas: Science of Soft Robots

Goal image of soft robotics

Since 2018, a project of MEXT Grant-in-Aid for Scientific Research on Innovative Areas, titled “Science of Soft Robots: Interdisciplinary integration of mechatronics, material science, and bio-computing” has been in progress. This major research project on soft robotics in Japan has a research period of 5 years. An outline of the project is presented herein.

Cite this article as:
K. Suzumori, “Overview of the Kakenhi Grant-in-Aid for Scientific Research on Innovative Areas: Science of Soft Robots,” J. Robot. Mechatron., Vol.34, No.2, pp. 195-201, 2022.
Data files:
References
  1. [1] K. Suzumori, S. Iikura, and H. Tanaka, “Development of flexible microactuator and its applications to robotic mechanisms,” IEEE Int. Conf. on Robotics and Automation, 1991.
  2. [2] S. Egawa and T. Higuchi, “Multi-layered electrostatic film actuator,” IEEE MEMS, 1990.
  3. [3] K. Oguro, Y. Kawami, and H. Takenaka, “Bending of an Ion-Conducting Polymer Film-Electrode Composite by an Electric Stimulus at Low Voltage,” Trans. of Micromachine Soc., Vol.5, pp. 27-30, 1992.
  4. [4] Y. Osada and M. Hasebe, “Electrically activated mechanochemical devices using polyelectrolyte gels,” Chemistry Letters, Vol.14, No.9, pp. 1285-1288, 1985.
  5. [5] Y. Tatara, “Mechanochemical actuators,” Advanced Robotics, Vol.2, Issue 1, 1987.
  6. [6] H. Okamura and H. Inoue, “Research for the Future Program: Micro-Mechatronics and Soft-Mechanics,” J. of the Robotics Society of Japan, Vol.18, No,8, pp. 1056-1060, 2000.
  7. [7] R. F. Shepherd et al., “Multigait soft robot,” PANS, Vol.108, No.51, 2011.
  8. [8] E. Brown et al., “Universal robotic gripper based on the jamming of granular material,” PNAS, Vol.107, No.22, 2010.
  9. [9] C. Laschi et al., “Soft Robot Arm Inspired by the Octopus,” Advanced Robotics, Vol.26, No.7, 2012.
  10. [10] H. Mochiyama, M. Gunji, and R. Niiyama, “Ostrich-Inspired Soft Robotics: A Flexible Bipedal Manipulator for Aggressive Physical Interaction,” J. Robot. Mechatron., Vol.34, No.2, pp. 212-218, 2022.
  11. [11] K. Misu, M. Ikeda, K. Or, M. Ando, M. Gunji, H. Mochiyama, and R. Niiyama, “Robostrich Arm: Wire-driven High-DOF Underactuated Manipulator,” J. Robot. Mechatron., Vol.34, No.2, pp. 328-338, 2022.
  12. [12] T. Umedachi and M. Shimizu, “Toward Self-Modifying Bio-Soft Robots,” J. Robot. Mechatron., Vol.34, No.2, pp. 219-222, 2022.
  13. [13] H. Tanaka, T. Nakata, and T. Yamasaki, “Biomimetic Soft Wings for Soft Robot Science,” J. Robot. Mechatron., Vol.34, No.2, pp. 223-226, 2022.
  14. [14] T. Horii, T. Fujie, and K. Fukuda, “Flexible Thin-Film Device for Powering Soft Robots,” J. Robot. Mechatron., Vol.34, No.2, pp. 227-230, 2022.
  15. [15] T. Horiuchi, H. Nabae, and K. Suzumori, “Three-Dimensional Ion Polymer–Metal Composite Soft Robots,” J. Robot. Mechatron., Vol.34, No.2, pp. 231-233, 2022.
  16. [16] K. Tadakuma, M. Kawakami, and H. Furukawa, “From a Deployable Soft Mechanism Inspired by a Nemertea Proboscis to a Robotic Blood Vessel Mechanism,” J. Robot. Mechatron., Vol.34, No.2, pp. 234-239, 2022.
  17. [17] R. Sakurai, M. Nishida, T. Jo, Y. Wakao, and K. Nakajima, “Durable Pneumatic Artificial Muscles with Electric Conductivity for Reliable Physical Reservoir Computing,” J. Robot. Mechatron., Vol.34, No.2, pp. 240-248, 2022.
  18. [18] S. Maeda, H. Shigemune, and H. Sawada, “Self-Actuating and Nonelectronic Machines,” J. Robot. Mechatron., Vol.34, No.2, pp. 249-252, 2022.
  19. [19] H. Ito, T. Sugi, and K. Nagai, “Controllable Biological Rhythms and Patterns,” J. Robot. Mechatron., Vol.34, No.2, pp. 253-256, 2022.
  20. [20] S. Arai, “Environmental Response Sensors Produced Using Bilayer-Type Organic Semiconductors,” J. Robot. Mechatron., Vol.34, No.2, pp. 257-259, 2022.
  21. [21] Y. Morimoto and S. Takeuchi, “Biohybrid Soft Robots Driven by Contractions of Skeletal Muscle Tissue,” J. Robot. Mechatron., Vol.34, No.2, pp. 260-262, 2022.
  22. [22] K. Shimba, K. Kotani, and Y. Jimbo, “Evaluating Axon Conduction Characteristics of Cultured Sensory Neurons Toward Soft Robot Control,” J. Robot. Mechatron., Vol.34, No.2, pp. 263-265, 2022.
  23. [23] G. Endo, K. Yamagishi, Y. Yamanaka, and K. Tadakuma, “Development of High-Durability Flexible Fabrics Using High-Strength Synthetic Fibers and its Application to Soft Robots,” J. Robot. Mechatron., Vol.34, No.2, pp. 266-269, 2022.
  24. [24] J. Shintake, “Green Robotics: Toward Realization of Environmentally Friendly Soft Robots,” J. Robot. Mechatron., Vol.34, No.2, pp. 270-272, 2022.
  25. [25] A. Suzuki and M. Hashimoto, “Development of a PVC Gel Actuator with a Particulate Structure,” J. Robot. Mechatron., Vol.34, No.2, pp. 273-275, 2022.
  26. [26] T. Nakamura, “Peristaltic Mixing Pump Based on Bowel Peristalsis Using Pneumatic Artificial Rubber Muscles and Prospects for Practical Applications,” J. Robot. Mechatron., Vol.34, No.2, pp. 276-278, 2022.
  27. [27] K. Furusawa, R. Teramae, H. Ohashi, and M. Shimizu, “Development of Living “Bio-Robots” for Autonomous Actuations,” J. Robot. Mechatron., Vol.34, No.2, pp. 279-284, 2022.
  28. [28] T. Matsuno and S. Hirai, “Analysis of Soft Contact in Force Sensing and Elastic Jumping,” J. Robot. Mechatron., Vol.34, No.2, pp. 285-287, 2022.
  29. [29] Y. Tanaka, “Development of Microdevices Combining Machine and Life Systems,” J. Robot. Mechatron., Vol.34, No.2, pp. 288-290, 2022.
  30. [30] S. Koseki, K. Kawamura, F. Inoue, and M. Ikeuchi, “Soft Microrobot for Embryo Transfer in Assisted Reproductive Technology,” J. Robot. Mechatron., Vol.34, No.2, pp. 291-293, 2022.
  31. [31] S. Miyagawa, R. Yuasa, H. Nabae, H. Furukawa, and M. Kawakami, “Development of a Soft Robot with Pressure Ulcer Prevention Functions,” J. Robot. Mechatron., Vol.34, No.2, pp. 294-297, 2022.
  32. [32] T. Ishikawa, T. Morita, and T. Omori, “Soft Microswimmer Powered by Fluid Oscillation,” J. Robot. Mechatron., Vol.34, No.2, pp. 298-300, 2022.
  33. [33] D. Owaki and V. Dürr, “Motion Hacking – Understanding by Controlling Animals –,” J. Robot. Mechatron., Vol.34, No.2, pp. 301-303, 2022.
  34. [34] A. Fukuhara, M. Gunji, Y. Masuda, K. Tadakuma, and A. Ishiguro, “Flexible Shoulder in Quadruped Animals and Robots Guiding Science of Soft Robotics,” J. Robot. Mechatron., Vol.34, No.2, pp. 304-309, 2022.
  35. [35] H. Yoshizawa, A. Takazawa, M. Kakiage, T. Yamanobe, N. Hayashi, M. Hiraoka, H. Masunaga, K. Aoyama, and H. Uehara, “In-Situ X-ray Analyses of Structural Change During Drawing and Shrinking of Linear Low-Density Polyethylene Film,” J. Robot. Mechatron., Vol.34, No.2, pp. 310-315, 2022.
  36. [36] T. Yagi, Z. Peng, and S. Kanno, “Neural Interface for Biohybrid Prosthetic Hands to Realize Sensory and Motor Functions,” J. Robot. Mechatron., Vol.34, No.2, pp. 316-318, 2022.
  37. [37] S. Tanaka and F. Nakamura, “Exploring the Bio-Functional Breaking Point of Living Tissue Subjected to External Physical Pressure,” J. Robot. Mechatron., Vol.34, No.2, pp. 319-321, 2022.
  38. [38] R. Futawatari, H. Terasawa, and O. Sugihara, “Flexible Light-Induced Self-Written Optical Waveguide Using Gel Material,” J. Robot. Mechatron., Vol.34, No.2, pp. 322-324, 2022.
  39. [39] Y. a. Seong, “Design Research of Wearable Soft Avatar Robot for Interactive Social Presence,” J. Robot. Mechatron., Vol.34, No.2, pp. 325-327, 2022.
  40. [40] K. Suzumori, “Iikabenna robot,” Kagakudojin, 2021.
  41. [41] T. Abe, S. Koizumi, H. Nabae, G. Endo, K. Suzumori, N. Sato, and M. Adachi, “Fabrication of ‘18 weave’ muscles and their application to soft power support suit for upper limbs using thin McKibben muscle,” IEEE Robotics and Automation Letters, Vol.4, No.3, pp. 2532-2538, 2019.
  42. [42] K. Fukuda, K. Yu, and T. Someya, “The future of flexible organic solar cells,” Advanced Energy Materials, Vol.10, No.25, 2000765, 2020.
  43. [43] M. Ito, T. Horii, and T. Fujie, “Polymer Nanosheet Interfaced Bioelectrode for Skin-Inert sEMG Measurement,” Adv. Mater. Interfaces, Vol.8, Issue 17, 2021.
  44. [44] K. Ashigaki, A. Iwasaki, D. Hagiwara, K. Negishi, K. Matsumoto, Y. Yasuyuki, H. Habu, and T. Nakamura, “Considering mixing process of rocket solid propellant using mixing transport device simulating peristaltic movement of intestinal tract,” IEEE Int. Conf. on Biomedical Robotics and Biomechatronics (BioRob), pp. 1291-1296, 2018.
  45. [45] Y. Yamanaka, S. Katagiri, H. Nabae, K. Suzumori, and G. Endo, “Development of a Food Handling Soft Robot Hand Considering a High-speed Pick-and-place Task,” IEEE/SICE Int. Symp. on System Integration (SII), pp. 87-92, 2020.
  46. [46] J. Ogawa, N. Yamada, Y. Watanabe, A. Khosla, M. Kawakami, and H. Furukawa, “Design of Hydrogel Material and 3D-Printed Molding for Imitating the Tactile Textured Properties of Moon Jellyfish,” ECS Trans., Vol.98, No.13, 39, 2020.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Sep. 22, 2022