single-rb.php

JRM Vol.36 No.5 pp. 1026-1036
doi: 10.20965/jrm.2024.p1026
(2024)

Paper:

Study on Improvement of Docking Mechanism for Docking–Undocking Drones in the Air and Docking Control Using an Onboard Camera

Rikiya Dohi* and Yoshiyuki Higashi** ORCID Icon

*Division of Mechanodesign, Kyoto Institute of Technology
Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto, Kyoto 606-8585, Japan

**Department of Robotics, Osaka Institute of Technology
1-45 Chayamachi, Kita-ku, Osaka, Osaka 530-8568, Japan

Received:
April 2, 2024
Accepted:
July 29, 2024
Published:
October 20, 2024
Keywords:
docking–undocking drone, onboard camera, image processing, electropermanent magnet, quadrotor
Abstract

In this study, we developed a docking mechanism for drones that enables docking and undocking in the air for cargo transportation. This capability allows the drone configuration to be adapted depending on the cargo size and shape. We introduced a novel docking mechanism that incorporates magnetic adsorption and a newly engineered locking mechanism. We developed a drone detection system capable of estimating the relative position of a target drone by utilizing an onboard camera to identify the infrared LEDs on the target drone via image processing. Moreover, flight experiments, including detection, docking, and undocking, were performed using a mock drone to demonstrate the effectiveness of the developed system.

Developed docking-undocking drone

Developed docking-undocking drone

Cite this article as:
R. Dohi and Y. Higashi, “Study on Improvement of Docking Mechanism for Docking–Undocking Drones in the Air and Docking Control Using an Onboard Camera,” J. Robot. Mechatron., Vol.36 No.5, pp. 1026-1036, 2024.
Data files:
References
  1. [1] P. L. Gonzalez-R, D. Canca, J. L. Andrade-Pineda, M. Calle, and J. M. Leon-Blanco, “Truck-drone team logistics: A heuristic approach to multi-drop route planning,” Transportation Research Part C: Emerging Technologies, Vol.114, pp. 657-680, 2020. https://doi.org/10.1016/j.trc.2020.02.030
  2. [2] F. Schiano, P. M. Kornatowski, L. Cencetti, and D. Floreano, “Reconfigurable drone system for transportation of parcels with variable mass and size,” IEEE Robotics and Automation Letters, Vol.7, No.4, pp. 12150-12157, 2022. https://doi.org/10.1109/LRA.2022.3208716
  3. [3] J. Sugihara, T. Nishio, K. Nagato, M. Nakao, and M. Zhao, “Design, control, and motion strategy of TRADY: Tilted-rotor-equipped aerial robot with autonomous in-flight assembly and disassembly ability,” Advanced Intelligent Systems, Vol.5, No.10, Article No.2300191, 2023. https://doi.org/10.1002/aisy.202300191
  4. [4] R. Dohi and Y. Higashi, “Integrated control and docking mechanism for docking–undocking drones in the air,” 2022 IEEE Region 10 Conf. (TENCON), 2022. https://doi.org/10.1109/TENCON55691.2022.9978033
  5. [5] Y. Higashi, S. Akahori, A. Masuda, and K. Takeuchi, “Verification of an EPM system for an aerial inspection robot and close-up image shooting,” Advanced Experimental Mechanics, Vol.1, pp. 179-184, 2016. https://doi.org/10.11395/aem.1.0_179
  6. [6] S. Akahori, Y. Higashi, A. Masuda, and K. Takeuchi, “Development of a vibration probe foot using an EPM for aerial inspection robots,” Proc. of the 10th Int. Symp. on Advanced Science and Technology in Experimental Mechanics (ISEM’13), Article No.055, 2015.
  7. [7] S. Akahori, Y. Higashi, and A. Masuda, “Development of an aerial inspection robot with EPM and camera arm for steel structures,” 2016 IEEE Region 10 Conf. (TENCON), pp. 3542-3545, 2016. https://doi.org/10.1109/TENCON.2016.7848716
  8. [8] K. Takeuchi, A. Masuda, S. Akahori, Y. Higashi, and N. Miura, “A close inspection and vibration sensing aerial robot for steel structures with an EPM-based landing device,” Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, and Civil Infrastructure 2017 (SPIE Proc. Vol.10169), Article No.101692U, 2017. https://doi.org/10.1117/12.2260386
  9. [9] A. Masuda, A. Tanaka, Y. Higashi, and N. Miura, “Reliable activation of an EPM-based clinging device for aerial inspection robots,” J. Robot. Mechatron., Vol.31, No.6, pp. 827-836, 2019. https://doi.org/10.20965/jrm.2019.p0827
  10. [10] K. Yamazaki, Y. Higashi, A. Masuda, and N. Miura, “Improvement of adsorption force of an EPM-based adsorb device by a suspension,” 2020 IEEE Region 10 Conf. (TENCON), pp. 1182-1186, 2020. https://doi.org/10.1109/TENCON50793.2020.9293917
  11. [11] Y. Higashi, K. Yamazaki, A. Masuda, N. Miura, and Y. Sawada, “Attractive force estimation of a magnetic adsorption unit for inspection UAVs,” J. Robot. Mechatron., Vol.33, No.6, pp. 1349-1358, 2021. https://doi.org/10.20965/jrm.2021.p1349
  12. [12] C. Smith et al., “UAV rapidly-deployable stage sensor with electro-permanent magnet docking mechanism for flood monitoring in undersampled watersheds,” HardwareX, Vol.12, Article No.e00325, 2022. https://doi.org/10.1016/j.ohx.2022.e00325
  13. [13] J. Tugwell et al., “Electropermanent magnetic anchoring for surgery and endoscopy,” IEEE Trans. on Biomedical Engineering, Vol.62, No.3, pp. 842-848, 2015. https://doi.org/10.1109/tbme.2014.2366032
  14. [14] K. J. McDonald, L. Kinnicutt, A. M. Moran, and T. Ranzani, “Modulation of magnetorheological fluid flow in soft robots using electropermanent magnets,” IEEE Robotics and Automation Letters, Vol.7, No.2, pp. 3914-3921, 2022. https://doi.org/10.1109/LRA.2022.3147873
  15. [15] P. Zhang, M. Kamezaki, Z. He, H. Sakamoto, and S. Sugano, “EPM-MRE: Electropermanent magnet-magnetorheological elastomer for soft actuation system and its application to robotic grasping,” IEEE Robotics and Automation Letters, Vol.6, No.4, pp. 8181-8188, 2021. https://doi.org/10.1109/LRA.2021.3100939
  16. [16] D. Saldaña, B. Gabrich, G. Li, M. Yim, and V. Kumar, “ModQuad: The flying modular structure that self-assembles in midair,” 2018 IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 691-698, 2018. https://doi.org/10.1109/ICRA.2018.8461014
  17. [17] G. Li et al., “ModQuad-Vi: A vision-based self-assembling modular quadrotor,” 2019 Int. Conf. on Robotics and Automation (ICRA), pp. 346-352, 2019. https://doi.org/10.1109/ICRA.2019.8794056
  18. [18] R. Oung, F. Bourgault, M. Donovan, and R. D’Andrea, “The distributed flight array,” 2010 IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 601-607, 2010. https://doi.org/10.1109/ROBOT.2010.5509882
  19. [19] R. Oung, M. Picallo Cruz, and R. D’Andrea, “A parameterized control methodology for a modular flying vehicle,” 2012 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 532-538, 2012. https://doi.org/10.1109/IROS.2012.6385706
  20. [20] M. Kriegleder, R. Oung, and R. D’Andrea, “Distributed altitude and attitude estimation from multiple distance measurements,” 2012 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 3626-3632, 2012. https://doi.org/10.1109/IROS.2012.6385658
  21. [21] M. Kriegleder, S. T. Digumarti, R. Oung, and R. D’Andrea, “Rendezvous with bearing-only information and limited sensing range,” 2015 IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 5941-5947, 2015. https://doi.org/10.1109/ICRA.2015.7140032
  22. [22] H. Lim, J. Park, D. Lee, and H. J. Kim, “Build your own quadrotor: Open-source projects on unmanned aerial vehicles,” IEEE Robotics & Automation Magazine, Vol.19, No.3, pp. 33-45, 2012. https://doi.org/10.1109/MRA.2012.2205629
  23. [23] A. B. Junaid, A. D. D. C. Sanchez, J. B. Bosch, N. Vitzilaios, and Y. Zweiri, “Design and implementation of a dual-axis tilting quadcopter,” Robotics, Vol.7, No.4, Article No.65, 2018. https://doi.org/10.3390/robotics7040065
  24. [24] M. Rabah, A. Rohan, S. A. S. Mohamed, and S.-H. Kim, “Autonomous moving target-tracking for a UAV quadcopter based on Fuzzy-PI,” IEEE Access, Vol.7, pp. 38407-38419, 2019. https://doi.org/10.1109/ACCESS.2019.2906345

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Mar. 17, 2025