single-rb.php

JRM Vol.37 No.1 pp. 8-12
doi: 10.20965/jrm.2025.p0008
(2025)

Review:

Review of Flexible/Stretchable Sensors for Soft Robot

Koichi Suzumori ORCID Icon and Hiroyuki Nabae ORCID Icon

School of Engineering, Institute of Science Tokyo
2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan

Received:
November 1, 2024
Accepted:
November 22, 2024
Published:
February 20, 2025
Keywords:
soft sensor, flexible sensor, stretchable sensor, soft robotics
Abstract

Flexible/stretchable sensors comprising soft structures that do not interfere with the softness of the bodies of soft robots are essential for achieving soft robots with superior operational performance. These sensors are expected to be applicable as sensing skin for humanoid robots and as interfaces for human-robot interactions. Herein, we refer to flexible/stretchable sensors investigated for soft robotics applications as “soft sensors” and review recent research trends. Specifically, we discuss optical, resistive, capacitive, and inductive soft sensors with emphasis on their materials and structures.

Conductive paste patterned on FMA ([29] in the text)

Conductive paste patterned on FMA ([29] in the text)

Cite this article as:
K. Suzumori and H. Nabae, “Review of Flexible/Stretchable Sensors for Soft Robot,” J. Robot. Mechatron., Vol.37 No.1, pp. 8-12, 2025.
Data files:
References
  1. [1] H. F. Schulte, “The characteristics of the McKibben Artificial Muscle, The Application of External Power in Prosthetics and Orthotics,” National Academy of Sciences, 1960.
  2. [2] K. Suzumori et al., “Development of flexible microactuator and its applications to robotic mechanisms,” 1991 IEEE Int. Conf. on Robotics and Automation, 1991. https://doi.org/10.1109/ROBOT.1991.131850
  3. [3] R. F. Shepherd et al., “Multigait soft robot,” PANS, Vol.108, No.51, pp. 20400-20403, 2011. https://doi.org/10.1073/pnas.1116564108
  4. [4] K. Suzumori et al., “The Science of Soft Robots: Design, Materials and Information Processing,” Springer, 2023. https://doi.org/10.1007/978-981-19-5174-9
  5. [5] F. Suganuma, A. Shimamoto, and K. Tanaka, “Development of a differential optical-fiber displacement sensor,” Appl. Opt., Vol.38, No.7, pp. 1103-1109, 1999. https://doi.org/10.1364/AO.38.001103
  6. [6] S. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, “Behaviour of intrinsic polymer optical fibre sensor for large-strain applications,” Meas. Sci. Technol., Vol.18, No.10, Article No.3144, 2007. https://doi.org/10.1088/0957-0233/18/10/S16
  7. [7] K. C. Galloway, Y. Chen, E. Templeton, B. Rife, I. S. Godage, and E. J. Barth, “Fiber optic shape sensing for soft robotics,” Soft robotics, Vol.6, No.5, pp. 671-684, 2019. https://doi.org/10.1089/soro.2018.0131
  8. [8] W. Tian, S. Wakimoto, D. Yamaguchi, and T. Kanda, “Development of a smart artificial muscle using optical fibres,” Smart Materials and Structures, Vol.33, No.5, Article No.055047, 2024. https://doi.org/10.1088/1361-665X/ad3ec9
  9. [9] M. Dobrzynski, R. Pericet-Camara, and D. Floreano, “Contactless deflection sensor for soft robots,” Proc. of IEEE/RSJ Int. Conf. Intell. Robot. Syst., pp. 1913-1918, 2011. https://doi.org/10.1109/IROS.2011.6094845
  10. [10] O. Sugihara et al., “Light-induced self-written polymeric optical waveguides for single-mode propagation and for optical interconnections,” IEEE Photonics Technology Letters, Vol.16, No.3, pp. 804-806, 2004. https://doi.org/10.1109/LPT.2004.823713
  11. [11] Y.-L. Park, S. C. Ryu, R. J. Black, K. K. Chau, B. Moslehi, and M. R. Cutkosky, “Exoskeletal force-sensing end-effectors with embedded optical fiber-bragg-grating sensors,” IEEE Trans. Robot., Vol.25, No.6, pp. 1319-1331, 2009. https://doi.org/10.1109/TRO.2009.2032965
  12. [12] B. A. L. Gwandu, X. W. Shu, Y. Liu, W. Zhang, L. Zhang, and I. Bennion, “Simultaneous measurement of strain and curvature using superstructure fibre Bragg gratings,” Sens. Actuators: A Phys., Vol.96, pp. 133-139, 2002. https://doi.org/10.1109/TRO.2009.2032965
  13. [13] J. Ge, A. E. James, L. Xu, Y. Chen, K. W. Kwok, and M. P. Fok, “Bidirectional soft silicone curvature sensor based on off-centered embedded fiber Bragg grating,” IEEE Photonics Technology Letters, Vol.28, No.20, pp. 2237-2240, 2016. https://doi.org/10.1109/LPT.2016.2590984
  14. [14] H. Wang, R. Zhang, W. Chen, X. Liang, and R. Pfeifer, “Shape detection algorithm for soft manipulator based on fiber bragg gratings,” IEEE/ASME Trans. on Mechatronics, Vol.21, No.6, pp. 2977-2982, 2016. https://doi.org/10.1109/TMECH.2016.2606491
  15. [15] M. Abayazid, M. Kemp, and S. Misra, “3D flexible needle steering in soft-tissue phantoms using fiber bragg grating sensors,” 2013 IEEE Int. Conf. on Robotics and Automation, pp. 5843-5849, 2013. https://doi.org/10.1109/ICRA.2013.6631418
  16. [16] I. Kang, M. Schulz, J. Kim, V. Shanov, and D. Shi, “A carbon nanotube strain sensor for structural health monitoring,” Smart Mater. Struct., Vol.15, No.3, Article No.737, 2006. https://doi.org/10.1088/0964-1726/15/3/009
  17. [17] O. Johnson, G. Kaschner, T. Mason, D. Fullwood, T. Hyatt, B. Adams, K. Cole, and G. Hansen, “Extreme piezoresistivity of silicone/nickel nanocomposites for high resolution large strain measurement,” Proc. TMS Ann. Meeting, pp. 197-206, 2010.
  18. [18] K. Loh, J. Lynch, B. Shim, and N. Kotov, “Tailoring piezoresistive sensitivity of multilayer carbon nanotube composite strain sensors,” J. Intell. Mater. Syst. Struct., Vol.19, No.7, pp. 747-764, 2008. https://doi.org/10.1177/1045389X07079872
  19. [19] M. Knite, V. Teteris, A. Kiploka, and J. Kaupuzs, “Polyisoprene-carbon black nanocomposites as tensile strain and pressure sensor materials,” Sens. Actuators A: Phys., Vol.110, Nos.1-3, pp. 142-149, 2004. https://doi.org/10.1016/j.sna.2003.08.006
  20. [20] L. Wang, F. Ma, Q. Shi, H. Liu, and X. Wang, “Study on compressive resistance creep and recovery of flexible pressure sensitive material based on carbon black filled silicone rubber composite,” Sens. Actuators: A Phys., pp. 207-215, 2011. https://doi.org/10.1016/j.sna.2010.10.023
  21. [21] M. Lacasse, V. Duchaine, and C. Gosselin, “Characterization of the electrical resistance of carbon-black-filled silicone: Application to a flexible and stretchable robot skin,” Proc. IEEE Int. Conf. Robot. Autom., pp. 4842-4848, 2010. https://doi.org/10.1109/ROBOT.2010.5509283
  22. [22] T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D. N. Futaba, and K. Hata, “A stretchable carbon nanotube strain sensor for human-motion detection,” Nat. Nanotechnol., Vol.6, pp. 296-301, 2011. https://doi.org/10.1038/nnano.2011.36
  23. [23] C. Mattmann, F. Clemens, and G. Tröster, “Sensor for measuring strain in textile,” Sensors, Vol.8, No.6, pp. 3719-3732, 2008. https://doi.org/10.3390/s8063719
  24. [24] T. G. Thuruthel, B. Shih, C. Laschi, and M. T. Tolley, “Soft robot perception using embedded soft sensors and recurrent neural networks,” Science Robotics, Vol.4, No.26, Article No.eaav1488, 2019. https://doi.org/10.1126/scirobotics.aav1488
  25. [25] O. A. Araromi, M. A. Graule, Dorsey, K. L. et al., “Ultra-sensitive and resilient compliant strain gauges for soft machines,” Nature, Vol.587, pp. 219-224, 2020. https://doi.org/10.1038/s41586-020-2892-6
  26. [26] Y.-J. Liu, W.-T. Cao, M.-G. Ma, and P. Wan, “Ultrasensitive Wearable Soft Strain Sensors of Conductive, Self-healing, and Elastic Hydrogels with Synergistic “Soft and Hard” Hybrid Networks,” ACS Applied Materials & Interfaces, Vol.9, No.30, pp. 25559-25570, 2017. https://doi.org/10.1021/acsami.7b07639
  27. [27] J. Oh, J. C. Yang, J.-O. Kim, H. Park, S. Y. Kwon, S. Lee, J. Y. Sim, H. W. Oh, J. Kim, and S. Park, “Pressure Insensitive Strain Sensor with Facile Solution-Based Process for Tactile Sensing Applications,” ACS Nano, Vol.12, No.8, pp. 7546-7553, 2018. https://doi.org/10.1021/acsnano.8b03488
  28. [28] R. L. Truby, M. Wehner, A. K. Grosskopf, D. M. Vogt, S. G. Uzel, R. J. Wood, and J. A. Lewis, “Soft somatosensitive actuators via embedded 3D printing,” Advanced Materials, Vol.30, No.15, Article No.1706383, 2018. https://doi.org/10.1002/adma.201706383
  29. [29] K. Kure et al., “Flexible displacement sensor using injected conductive paste,” Sensors and Actuators A: Physical, Vol.143, No.2, pp. 272-278, 2008. https://doi.org/10.1016/j.sna.2007.11.031
  30. [30] G. Gerboni, A. Diodato, G. Ciuti, M. Cianchetti, and A. Menciassi, “Feedback control of soft robot actuators via commercial flex bend sensors,” IEEE/ASME Trans. on Mechatronics, Vol.22, No.4, pp. 1881-1888, 2017. https://doi.org/10.1109/TMECH.2017.2699677
  31. [31] Y.-L. Park, C. Majidi, R. Kramer, P. Bérard, and R. J. Wood, “Hyperelastic pressure sensing with a liquid embedded elstomer,” J. Micromech. Microeng., Vol.20, No.12, Article No.125029, 2010. https://doi.org/10.1088/0960-1317/20/12/125029
  32. [32] Y.-L. Park, B. Chen, and R. J. Wood, “Design and fabrication of soft artificial skin using embedded microchannels and liquid conductors,” IEEE Sensors J., Vol.12, No.8, pp. 2711-2718, 2012. https://doi.org/10.1109/JSEN.2012.2200790
  33. [33] D. M. Vogt, Y.-L. Park, and R. J. Wood, “Design and characterization of a soft multi-axis force sensor using embedded microfluidic channels,” IEEE Sens. J., Vol.13, No.10, pp. 4056-4064, 2013. https://doi.org/10.1109/JSEN.2013.2272320
  34. [34] J.-B. Chossat, Y. -L. Park, R. J. Wood, and V. Duchaine, “A Soft Strain Sensor Based on Ionic and Metal Liquids,” IEEE Sensors J., Vol.13, No.9, pp. 3405-3414, 2013. https://doi.org/10.1109/JSEN.2013.2263797
  35. [35] A. Frutiger, J. T. Muth, D. M. Vogt, Y. Mengüç, A. Campo, A. D. Valentine, C. J. Walsh, and J. A. Lewis, “Capacitive soft strain sensors via multicore-shell fiber printing,” Adv. Mater., Vol.27, No.15, pp. 2440-2446, 2015. https://doi.org/10.1002/adma.201500072
  36. [36] J. T. Muth, D. M. Vogt, R. L. Truby, Y. Mengüç, D. B. Kolesky, R. J. Wood, and J. A. Lewis, “Embedded 3D printing of strain sensors within highly stretchable elastomers,” Advanced Materials, Vol.26, No.36, pp. 6307-6312, 2014. https://doi.org/10.1002/adma.201400334
  37. [37] D. Y. Choi, M. H. Kim, Y. S. Oh, S.-H. Jung, J. H. Jung, H. J. Sung, H. W. Lee, and H. M. Lee, “Highly Stretchable, Hysteresis-Free Ionic Liquid-Based Strain Sensor for Precise Human Motion Monitoring,” ACS Applied Materials and Interfaces, Vol.9, No.2, pp. 1770-1780, 2017. https://doi.org/10.1021/acsami.6b12415
  38. [38] J. Shintake, Y. Piskarev, S. H. Jeong, and D. Floreano, “Ultrastretchable strain sensors using carbon black-filled elastomer composites and comparison of capacitive versus resistive sensors,” Advanced Materials Technologies, Vol.3, No.3, Article No.1700284, 2018. https://doi.org/10.1002/admt.201700284
  39. [39] C. J. Hohimer et al., “3D printed conductive thermoplastic polyurethane/carbon nanotube composites for capacitive and piezoresistive sensing in soft pneumatic actuators,” Additive Manufacturing, Vol.34, Article No.101281, 2020. https://doi.org/10.1016/j.addma.2020.101281
  40. [40] S. S. Robinson, K. W. O’Brien, H. Zhao, B. N. Peele, C. M. Larson, B. C. M. Murray, I. M. van Meerbeek, S. N. Dunham, and R. F. Shepherd, “Integrated soft sensors and elastomeric actuators for tactile machines with kinesthetic sense,” Extreme Mechanics Letters, Vol.5, pp. 47-53, 2015. https://doi.org/10.1016/j.eml.2015.09.005
  41. [41] P. Roberts, D. D. Damian, W. Shan, T. Lu, and C. Majidi, “Soft-matter capacitive sensor for measuring shear and pressure deformation,” 2013 IEEE Int. Conf. on Robotics and Automation, pp. 3529-3534, 2013. https://doi.org/10.1109/ICRA.2013.6631071
  42. [42] S. Laflamme, M. Kollosche, J. J. Connor, and G. Kofod, “Soft capacitive sensor for structural health monitoring of large-scale systems,” Structural Control and Health Monitoring, Vol.19, No.1, pp. 70-81, 2012. https://doi.org/10.1002/stc.426
  43. [43] O. Atalay, “Textile-Based, Interdigital, Capacitive, Soft-Strain Sensor for Wearable Applications,” Materials, Vol.11, No.5, Article No.768, 2018. https://doi.org/10.3390/ma11050768
  44. [44] O. Atalay, A. Atalay, J. Gafford, and C. Walsh, “A highly sensitive capacitive-based soft pressure sensor based on a conductive fabric and a microporous dielectric layer,” Advanced Materials Technologies, Vol.3, No.1, Article No.1700237, 2018. https://doi.org/10.1002/admt.201700237
  45. [45] C. B. Cooper, K. Arutselvan, Y. Liu, D. Armstrong, Y. Lin, M. R. Khan, J. Genzer, and M. D. Dickey, “Stretchable capacitive sensors of torsion, strain, and touch using double helix liquid metal fibers,” Advanced Functional Materials, Vol.27, No.20, Article No.1605630, 2017. https://doi.org/10.1002/adfm.201770124
  46. [46] R. Nur, N. Matsuhisa, Z. Jiang, M. O. G. Nayeem, T. Yokota, and T. Someya, “A highly sensitive capacitive-type strain sensor using wrinkled ultrathin gold films,” Nano Letters, Vol.18, No.9, pp. 5610-5617, 2018. https://doi.org/10.1021/acs.nanolett.8b02088
  47. [47] K. Fukuda and T. Someya, “Recent progress in the development of printed thin-film transistors and circuits with high-resolution printing technology,” Advanced Materials, Vol.29, No.25, 2017. https://doi.org/10.1002/adma.201602736
  48. [48] K. Yamagishi et al., “Elastic kirigami patch for electromyographic analysis of the palm muscle during baseball pitching,” NGP Asia Materials, Vol.11, Article No.80, 2019. https://doi.org/10.1038/s41427-019-0183-1
  49. [49] W. Felt, M. J. Telleria, T. F Allen, G. Hein, J. B. Pompa, K. Albert, and C. D. Remy, “An inductance-based sensing system for bellows-driven continuum joints in soft robots,” Autonomous Robots, Vol.43, pp. 435-448, 2019. https://doi.org/10.1007/s10514-018-9769-7
  50. [50] W. Felt, M. Suen, and C. D. Remy, “Sensing the motion of bellows through changes in mutual inductance,” 2016 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pp. 5252-5257, 2016. https://doi.org/10.1109/IROS.2016.7759772
  51. [51] W. Felt, S. Lu, and C. D. Remy, “Modeling and design of “smart braid” inductance sensors for fiber-reinforced elastomeric enclosures,” IEEE Sensors J., Vol.18, No.7, pp. 2827-2835, 2018. https://doi.org/10.1109/JSEN.2018.2802640
  52. [52] W. Felt, K. Y. Chin, and C. D. Remy, “Smart braid feedback for the closed-loop control of soft robotic systems,” Soft Robotics, Vol.4, No.3, pp. 261-273, 2017. https://doi.org/10.1089/soro.2016.0056
  53. [53] S. K. Sahu, I. Tamadon, B. Rosa, P. Renaud, and A. Menciassi, “A spring-based inductive sensor for soft and flexible robots,” IEEE Sensors J., Vol.22, No.20, pp. 19931-19940, 2022. https://doi.org/10.1109/JSEN.2022.3201049
  54. [54] Z. Xing, J. Lin, D. McCoul, D. Zhang, and J. Zhao, “Inductive strain sensor with high repeatability and ultra-low hysteresis based on mechanical spring,” IEEE Sensors J., Vol.20, No.24, pp. 14670-14675, 2020. https://doi.org/10.1109/JSEN.2020.3010345
  55. [55] A. V. Prituja, H. Banerjee, and H. Ren, “Electromagnetically enhanced soft and flexible bend sensor: A quantitative analysis with different cores,” IEEE Sensors J., Vol.18, No.9, pp. 3580-3589, 2018. https://doi.org/10.1109/JSEN.2018.2817211
  56. [56] L. Y. Zhou, Q. Gao, J. F. Zhan, C. Q. Xie, J. Z. Fu, and Y. He, “Three-dimensional printed wearable sensors with liquid metals for detecting the pose of snakelike soft robots,” ACS Applied Materials & Interfaces, Vol.10, No.27, pp. 23208-23217, 2018. https://doi.org/10.1021/acsami.8b06903
  57. [57] K. Choi, S. J. Park, M. Won, and C. H. Park, “Soft inductive coil spring strain sensor integrated with SMA spring bundle actuator,” Sensors, Vol.21, No.7, Article No.2304, 2021. https://doi.org/10.3390/s21072304
  58. [58] S. Wakimoto, S. Kogawa, H. Matsuda, K. Nagaoka, and T. Kanda, “Comparison of smart artificial muscles with different functional fibers,” ACTUATOR 2021: Int. Conf. and Exhibition on New Actuator Systems and Applications, 2021.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Mar. 04, 2025