Review:
Review of Flexible/Stretchable Sensors for Soft Robot
Koichi Suzumori
and Hiroyuki Nabae

School of Engineering, Institute of Science Tokyo
2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
Flexible/stretchable sensors comprising soft structures that do not interfere with the softness of the bodies of soft robots are essential for achieving soft robots with superior operational performance. These sensors are expected to be applicable as sensing skin for humanoid robots and as interfaces for human-robot interactions. Herein, we refer to flexible/stretchable sensors investigated for soft robotics applications as “soft sensors” and review recent research trends. Specifically, we discuss optical, resistive, capacitive, and inductive soft sensors with emphasis on their materials and structures.
![Conductive paste patterned on FMA ([29] in the text)](https://www.fujipress.jp/main/wp-content/themes/Fujipress/JRM/abst-image/00370001/01.jpg)
Conductive paste patterned on FMA ([29] in the text)
- [1] H. F. Schulte, “The characteristics of the McKibben Artificial Muscle, The Application of External Power in Prosthetics and Orthotics,” National Academy of Sciences, 1960.
- [2] K. Suzumori et al., “Development of flexible microactuator and its applications to robotic mechanisms,” 1991 IEEE Int. Conf. on Robotics and Automation, 1991. https://doi.org/10.1109/ROBOT.1991.131850
- [3] R. F. Shepherd et al., “Multigait soft robot,” PANS, Vol.108, No.51, pp. 20400-20403, 2011. https://doi.org/10.1073/pnas.1116564108
- [4] K. Suzumori et al., “The Science of Soft Robots: Design, Materials and Information Processing,” Springer, 2023. https://doi.org/10.1007/978-981-19-5174-9
- [5] F. Suganuma, A. Shimamoto, and K. Tanaka, “Development of a differential optical-fiber displacement sensor,” Appl. Opt., Vol.38, No.7, pp. 1103-1109, 1999. https://doi.org/10.1364/AO.38.001103
- [6] S. Kiesel, K. Peters, T. Hassan, and M. Kowalsky, “Behaviour of intrinsic polymer optical fibre sensor for large-strain applications,” Meas. Sci. Technol., Vol.18, No.10, Article No.3144, 2007. https://doi.org/10.1088/0957-0233/18/10/S16
- [7] K. C. Galloway, Y. Chen, E. Templeton, B. Rife, I. S. Godage, and E. J. Barth, “Fiber optic shape sensing for soft robotics,” Soft robotics, Vol.6, No.5, pp. 671-684, 2019. https://doi.org/10.1089/soro.2018.0131
- [8] W. Tian, S. Wakimoto, D. Yamaguchi, and T. Kanda, “Development of a smart artificial muscle using optical fibres,” Smart Materials and Structures, Vol.33, No.5, Article No.055047, 2024. https://doi.org/10.1088/1361-665X/ad3ec9
- [9] M. Dobrzynski, R. Pericet-Camara, and D. Floreano, “Contactless deflection sensor for soft robots,” Proc. of IEEE/RSJ Int. Conf. Intell. Robot. Syst., pp. 1913-1918, 2011. https://doi.org/10.1109/IROS.2011.6094845
- [10] O. Sugihara et al., “Light-induced self-written polymeric optical waveguides for single-mode propagation and for optical interconnections,” IEEE Photonics Technology Letters, Vol.16, No.3, pp. 804-806, 2004. https://doi.org/10.1109/LPT.2004.823713
- [11] Y.-L. Park, S. C. Ryu, R. J. Black, K. K. Chau, B. Moslehi, and M. R. Cutkosky, “Exoskeletal force-sensing end-effectors with embedded optical fiber-bragg-grating sensors,” IEEE Trans. Robot., Vol.25, No.6, pp. 1319-1331, 2009. https://doi.org/10.1109/TRO.2009.2032965
- [12] B. A. L. Gwandu, X. W. Shu, Y. Liu, W. Zhang, L. Zhang, and I. Bennion, “Simultaneous measurement of strain and curvature using superstructure fibre Bragg gratings,” Sens. Actuators: A Phys., Vol.96, pp. 133-139, 2002. https://doi.org/10.1109/TRO.2009.2032965
- [13] J. Ge, A. E. James, L. Xu, Y. Chen, K. W. Kwok, and M. P. Fok, “Bidirectional soft silicone curvature sensor based on off-centered embedded fiber Bragg grating,” IEEE Photonics Technology Letters, Vol.28, No.20, pp. 2237-2240, 2016. https://doi.org/10.1109/LPT.2016.2590984
- [14] H. Wang, R. Zhang, W. Chen, X. Liang, and R. Pfeifer, “Shape detection algorithm for soft manipulator based on fiber bragg gratings,” IEEE/ASME Trans. on Mechatronics, Vol.21, No.6, pp. 2977-2982, 2016. https://doi.org/10.1109/TMECH.2016.2606491
- [15] M. Abayazid, M. Kemp, and S. Misra, “3D flexible needle steering in soft-tissue phantoms using fiber bragg grating sensors,” 2013 IEEE Int. Conf. on Robotics and Automation, pp. 5843-5849, 2013. https://doi.org/10.1109/ICRA.2013.6631418
- [16] I. Kang, M. Schulz, J. Kim, V. Shanov, and D. Shi, “A carbon nanotube strain sensor for structural health monitoring,” Smart Mater. Struct., Vol.15, No.3, Article No.737, 2006. https://doi.org/10.1088/0964-1726/15/3/009
- [17] O. Johnson, G. Kaschner, T. Mason, D. Fullwood, T. Hyatt, B. Adams, K. Cole, and G. Hansen, “Extreme piezoresistivity of silicone/nickel nanocomposites for high resolution large strain measurement,” Proc. TMS Ann. Meeting, pp. 197-206, 2010.
- [18] K. Loh, J. Lynch, B. Shim, and N. Kotov, “Tailoring piezoresistive sensitivity of multilayer carbon nanotube composite strain sensors,” J. Intell. Mater. Syst. Struct., Vol.19, No.7, pp. 747-764, 2008. https://doi.org/10.1177/1045389X07079872
- [19] M. Knite, V. Teteris, A. Kiploka, and J. Kaupuzs, “Polyisoprene-carbon black nanocomposites as tensile strain and pressure sensor materials,” Sens. Actuators A: Phys., Vol.110, Nos.1-3, pp. 142-149, 2004. https://doi.org/10.1016/j.sna.2003.08.006
- [20] L. Wang, F. Ma, Q. Shi, H. Liu, and X. Wang, “Study on compressive resistance creep and recovery of flexible pressure sensitive material based on carbon black filled silicone rubber composite,” Sens. Actuators: A Phys., pp. 207-215, 2011. https://doi.org/10.1016/j.sna.2010.10.023
- [21] M. Lacasse, V. Duchaine, and C. Gosselin, “Characterization of the electrical resistance of carbon-black-filled silicone: Application to a flexible and stretchable robot skin,” Proc. IEEE Int. Conf. Robot. Autom., pp. 4842-4848, 2010. https://doi.org/10.1109/ROBOT.2010.5509283
- [22] T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D. N. Futaba, and K. Hata, “A stretchable carbon nanotube strain sensor for human-motion detection,” Nat. Nanotechnol., Vol.6, pp. 296-301, 2011. https://doi.org/10.1038/nnano.2011.36
- [23] C. Mattmann, F. Clemens, and G. Tröster, “Sensor for measuring strain in textile,” Sensors, Vol.8, No.6, pp. 3719-3732, 2008. https://doi.org/10.3390/s8063719
- [24] T. G. Thuruthel, B. Shih, C. Laschi, and M. T. Tolley, “Soft robot perception using embedded soft sensors and recurrent neural networks,” Science Robotics, Vol.4, No.26, Article No.eaav1488, 2019. https://doi.org/10.1126/scirobotics.aav1488
- [25] O. A. Araromi, M. A. Graule, Dorsey, K. L. et al., “Ultra-sensitive and resilient compliant strain gauges for soft machines,” Nature, Vol.587, pp. 219-224, 2020. https://doi.org/10.1038/s41586-020-2892-6
- [26] Y.-J. Liu, W.-T. Cao, M.-G. Ma, and P. Wan, “Ultrasensitive Wearable Soft Strain Sensors of Conductive, Self-healing, and Elastic Hydrogels with Synergistic “Soft and Hard” Hybrid Networks,” ACS Applied Materials & Interfaces, Vol.9, No.30, pp. 25559-25570, 2017. https://doi.org/10.1021/acsami.7b07639
- [27] J. Oh, J. C. Yang, J.-O. Kim, H. Park, S. Y. Kwon, S. Lee, J. Y. Sim, H. W. Oh, J. Kim, and S. Park, “Pressure Insensitive Strain Sensor with Facile Solution-Based Process for Tactile Sensing Applications,” ACS Nano, Vol.12, No.8, pp. 7546-7553, 2018. https://doi.org/10.1021/acsnano.8b03488
- [28] R. L. Truby, M. Wehner, A. K. Grosskopf, D. M. Vogt, S. G. Uzel, R. J. Wood, and J. A. Lewis, “Soft somatosensitive actuators via embedded 3D printing,” Advanced Materials, Vol.30, No.15, Article No.1706383, 2018. https://doi.org/10.1002/adma.201706383
- [29] K. Kure et al., “Flexible displacement sensor using injected conductive paste,” Sensors and Actuators A: Physical, Vol.143, No.2, pp. 272-278, 2008. https://doi.org/10.1016/j.sna.2007.11.031
- [30] G. Gerboni, A. Diodato, G. Ciuti, M. Cianchetti, and A. Menciassi, “Feedback control of soft robot actuators via commercial flex bend sensors,” IEEE/ASME Trans. on Mechatronics, Vol.22, No.4, pp. 1881-1888, 2017. https://doi.org/10.1109/TMECH.2017.2699677
- [31] Y.-L. Park, C. Majidi, R. Kramer, P. Bérard, and R. J. Wood, “Hyperelastic pressure sensing with a liquid embedded elstomer,” J. Micromech. Microeng., Vol.20, No.12, Article No.125029, 2010. https://doi.org/10.1088/0960-1317/20/12/125029
- [32] Y.-L. Park, B. Chen, and R. J. Wood, “Design and fabrication of soft artificial skin using embedded microchannels and liquid conductors,” IEEE Sensors J., Vol.12, No.8, pp. 2711-2718, 2012. https://doi.org/10.1109/JSEN.2012.2200790
- [33] D. M. Vogt, Y.-L. Park, and R. J. Wood, “Design and characterization of a soft multi-axis force sensor using embedded microfluidic channels,” IEEE Sens. J., Vol.13, No.10, pp. 4056-4064, 2013. https://doi.org/10.1109/JSEN.2013.2272320
- [34] J.-B. Chossat, Y. -L. Park, R. J. Wood, and V. Duchaine, “A Soft Strain Sensor Based on Ionic and Metal Liquids,” IEEE Sensors J., Vol.13, No.9, pp. 3405-3414, 2013. https://doi.org/10.1109/JSEN.2013.2263797
- [35] A. Frutiger, J. T. Muth, D. M. Vogt, Y. Mengüç, A. Campo, A. D. Valentine, C. J. Walsh, and J. A. Lewis, “Capacitive soft strain sensors via multicore-shell fiber printing,” Adv. Mater., Vol.27, No.15, pp. 2440-2446, 2015. https://doi.org/10.1002/adma.201500072
- [36] J. T. Muth, D. M. Vogt, R. L. Truby, Y. Mengüç, D. B. Kolesky, R. J. Wood, and J. A. Lewis, “Embedded 3D printing of strain sensors within highly stretchable elastomers,” Advanced Materials, Vol.26, No.36, pp. 6307-6312, 2014. https://doi.org/10.1002/adma.201400334
- [37] D. Y. Choi, M. H. Kim, Y. S. Oh, S.-H. Jung, J. H. Jung, H. J. Sung, H. W. Lee, and H. M. Lee, “Highly Stretchable, Hysteresis-Free Ionic Liquid-Based Strain Sensor for Precise Human Motion Monitoring,” ACS Applied Materials and Interfaces, Vol.9, No.2, pp. 1770-1780, 2017. https://doi.org/10.1021/acsami.6b12415
- [38] J. Shintake, Y. Piskarev, S. H. Jeong, and D. Floreano, “Ultrastretchable strain sensors using carbon black-filled elastomer composites and comparison of capacitive versus resistive sensors,” Advanced Materials Technologies, Vol.3, No.3, Article No.1700284, 2018. https://doi.org/10.1002/admt.201700284
- [39] C. J. Hohimer et al., “3D printed conductive thermoplastic polyurethane/carbon nanotube composites for capacitive and piezoresistive sensing in soft pneumatic actuators,” Additive Manufacturing, Vol.34, Article No.101281, 2020. https://doi.org/10.1016/j.addma.2020.101281
- [40] S. S. Robinson, K. W. O’Brien, H. Zhao, B. N. Peele, C. M. Larson, B. C. M. Murray, I. M. van Meerbeek, S. N. Dunham, and R. F. Shepherd, “Integrated soft sensors and elastomeric actuators for tactile machines with kinesthetic sense,” Extreme Mechanics Letters, Vol.5, pp. 47-53, 2015. https://doi.org/10.1016/j.eml.2015.09.005
- [41] P. Roberts, D. D. Damian, W. Shan, T. Lu, and C. Majidi, “Soft-matter capacitive sensor for measuring shear and pressure deformation,” 2013 IEEE Int. Conf. on Robotics and Automation, pp. 3529-3534, 2013. https://doi.org/10.1109/ICRA.2013.6631071
- [42] S. Laflamme, M. Kollosche, J. J. Connor, and G. Kofod, “Soft capacitive sensor for structural health monitoring of large-scale systems,” Structural Control and Health Monitoring, Vol.19, No.1, pp. 70-81, 2012. https://doi.org/10.1002/stc.426
- [43] O. Atalay, “Textile-Based, Interdigital, Capacitive, Soft-Strain Sensor for Wearable Applications,” Materials, Vol.11, No.5, Article No.768, 2018. https://doi.org/10.3390/ma11050768
- [44] O. Atalay, A. Atalay, J. Gafford, and C. Walsh, “A highly sensitive capacitive-based soft pressure sensor based on a conductive fabric and a microporous dielectric layer,” Advanced Materials Technologies, Vol.3, No.1, Article No.1700237, 2018. https://doi.org/10.1002/admt.201700237
- [45] C. B. Cooper, K. Arutselvan, Y. Liu, D. Armstrong, Y. Lin, M. R. Khan, J. Genzer, and M. D. Dickey, “Stretchable capacitive sensors of torsion, strain, and touch using double helix liquid metal fibers,” Advanced Functional Materials, Vol.27, No.20, Article No.1605630, 2017. https://doi.org/10.1002/adfm.201770124
- [46] R. Nur, N. Matsuhisa, Z. Jiang, M. O. G. Nayeem, T. Yokota, and T. Someya, “A highly sensitive capacitive-type strain sensor using wrinkled ultrathin gold films,” Nano Letters, Vol.18, No.9, pp. 5610-5617, 2018. https://doi.org/10.1021/acs.nanolett.8b02088
- [47] K. Fukuda and T. Someya, “Recent progress in the development of printed thin-film transistors and circuits with high-resolution printing technology,” Advanced Materials, Vol.29, No.25, 2017. https://doi.org/10.1002/adma.201602736
- [48] K. Yamagishi et al., “Elastic kirigami patch for electromyographic analysis of the palm muscle during baseball pitching,” NGP Asia Materials, Vol.11, Article No.80, 2019. https://doi.org/10.1038/s41427-019-0183-1
- [49] W. Felt, M. J. Telleria, T. F Allen, G. Hein, J. B. Pompa, K. Albert, and C. D. Remy, “An inductance-based sensing system for bellows-driven continuum joints in soft robots,” Autonomous Robots, Vol.43, pp. 435-448, 2019. https://doi.org/10.1007/s10514-018-9769-7
- [50] W. Felt, M. Suen, and C. D. Remy, “Sensing the motion of bellows through changes in mutual inductance,” 2016 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pp. 5252-5257, 2016. https://doi.org/10.1109/IROS.2016.7759772
- [51] W. Felt, S. Lu, and C. D. Remy, “Modeling and design of “smart braid” inductance sensors for fiber-reinforced elastomeric enclosures,” IEEE Sensors J., Vol.18, No.7, pp. 2827-2835, 2018. https://doi.org/10.1109/JSEN.2018.2802640
- [52] W. Felt, K. Y. Chin, and C. D. Remy, “Smart braid feedback for the closed-loop control of soft robotic systems,” Soft Robotics, Vol.4, No.3, pp. 261-273, 2017. https://doi.org/10.1089/soro.2016.0056
- [53] S. K. Sahu, I. Tamadon, B. Rosa, P. Renaud, and A. Menciassi, “A spring-based inductive sensor for soft and flexible robots,” IEEE Sensors J., Vol.22, No.20, pp. 19931-19940, 2022. https://doi.org/10.1109/JSEN.2022.3201049
- [54] Z. Xing, J. Lin, D. McCoul, D. Zhang, and J. Zhao, “Inductive strain sensor with high repeatability and ultra-low hysteresis based on mechanical spring,” IEEE Sensors J., Vol.20, No.24, pp. 14670-14675, 2020. https://doi.org/10.1109/JSEN.2020.3010345
- [55] A. V. Prituja, H. Banerjee, and H. Ren, “Electromagnetically enhanced soft and flexible bend sensor: A quantitative analysis with different cores,” IEEE Sensors J., Vol.18, No.9, pp. 3580-3589, 2018. https://doi.org/10.1109/JSEN.2018.2817211
- [56] L. Y. Zhou, Q. Gao, J. F. Zhan, C. Q. Xie, J. Z. Fu, and Y. He, “Three-dimensional printed wearable sensors with liquid metals for detecting the pose of snakelike soft robots,” ACS Applied Materials & Interfaces, Vol.10, No.27, pp. 23208-23217, 2018. https://doi.org/10.1021/acsami.8b06903
- [57] K. Choi, S. J. Park, M. Won, and C. H. Park, “Soft inductive coil spring strain sensor integrated with SMA spring bundle actuator,” Sensors, Vol.21, No.7, Article No.2304, 2021. https://doi.org/10.3390/s21072304
- [58] S. Wakimoto, S. Kogawa, H. Matsuda, K. Nagaoka, and T. Kanda, “Comparison of smart artificial muscles with different functional fibers,” ACTUATOR 2021: Int. Conf. and Exhibition on New Actuator Systems and Applications, 2021.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.