Paper:
Force Compensating Trajectories for Redundant Robots: Experimental Results
Daniela Vassileva*, George Boiadjiev**, Haruhisa Kawasaki***,
and Tetsuya Mouri***
*Harmonic Drive Systems Inc., 1856-1 Hotakamaki, Azumino, Nagano 399-8305, Japan
**Mechatronics Systems Department, Institute of Mechanics, BAS, Acad. G. Bonchev Str., bl. 4, Sofia 1113, Bulgaria
***Department of Human and Inf. Syst., Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
The proposed control strategy is simple, no additional penalty functions are used to restraint the end-effector motion as in the case of the conventional methods. No pseudo inverse kinematics calculations are required; the desired trajectories are generated directly in the configuration space. No complicated control schemes are introduced, the proposed method is based on solving algebraic systems of equations and finding eigenvectors and eigenvalues.
In the paper the results from simulations and experiments based on the proposed method are presented and discussed.
- [1] R. Murray, Z. Li, and S. Sastry, “A Mathematical Introduction to Robotic Manipulation,” CRC Press, pp. 456, 1994.
- [2] D. Bertram, J. Kuffner, R. Dillmann, and T. Asfour, “An integrated approach to inverse kinematics and path planning for redundant manipulators,” Proc. Of IEEE Conf. on Robotics and Automation, pp. 1874-1879, Orlando, 2006.
- [3] O. Yonghwan, C. Wankyun, and Y. Youngil, “Extended Impedance Control of Redundant Manipulators Based on Weighted Decomposition of Joint Space,” Journal of Robotics Systems, 15(5), pp. 231-258, 1998.
- [4] I. Iossifidis and G. Schoner, “Dynamical Systems approach for the Autonomous Avoidance of Obstacles and Joint-limits for a Redundant Robot Arm,” Proc. Of the 2006 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Oct. 9-15, Beijing, China, 2006.
- [5] Y. Zhang and J. Wang, “Obstacle Avoidance for Kinematically Redundant Manipulators using a Dual Neural Network,” IEEE Trans. On Systems, Man and Cybernetics, Part B: Cybernetics, Vol.34, No.1, pp. 752-760, 2004.
- [6] J. M. Hollerbach and K. S. Suh, “Redundancy Resolution of Manipulators Through Torque Optimization,” Proc. IEEE ICRA, pp. 1016-1021, 1985.
- [7] P. Hsu, J. Hauser, and S. Sastry, “Dynamic Control of Redundant Manipulators,” J. Robot. Syst., 6, pp. 133-148, 1989.
- [8] C. Klein and C. Huang, “Review on pseudoinverse control for use with kinematically redundant manipulators,” IEEE Transactions on Systems, Man and Cybernetics, Vol.13, No.3, pp. 245-250, 1983.
- [9] J. A. Kuo and D. J. Sanger, “Task Planning for Serial Redundant Manipulators,” Robotica, Vol.15, pp. 75-83, 1997.
- [10] F. Lewis, D. Dawson, and C. Abdalah, “Robot Manipulator Control, Theory and Practice,” 3rded., Marcel Dekker, Inc., pp. 614, 2004.
- [11] L. Sciavicco and B. Siciliano, “Modeling and Control of Robot-manipulators,” 2nded., Springer, pp. 377, 2007.
- [12] G. Boiadjiev, D. Vassileva, H. Kawasaki, and T. Mouri, “Sensibility Control of Redundant Robots: Sensibility Directions along Trajectory Tangent Vector,” Proc. of the IEEE Int. Conf. on Industrial Technology ICIT'2005, Hong Kong, pp. 1164-1169, 2005.
- [13] D. Vassileva, G. Boiadjiev, H. Kawasaki, and T. Mouri, “Sensibility Control of Redundant Robots: Force Compensation by Kernel Trajectories,” Proc. of the IEEE Int. Conf. on Industrial Technologies, pp. 1061-1065, India, 2006.
- [14] G. Strang, “Linear Algebra and its applications,” NY Press, 1976.
- [15] D. Vassileva, G Boiadjiev, H. Kawasaki, and T. Mouri, “Application of the Servo-control Method with Standard Corrections for Robot-manipulators Control,” Proc. of the IEEE Int. Conf. on Mechatronics and Autom. ICMA'07, pp. 3238-3243, Harbin, China, 2007.
- [16] G. Boiadjiev, D. Vassileva, H. Kawasaki, and T. Mouri, “Sensibility control of redundant robots: position control by image trajectories,” Int. Conf. on Comp. Intelligence for Modeling, Contr. & Autom. CIMCA'06, CD, Sydney, Australia, 2006.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.
Copyright© 2009 by Fuji Technology Press Ltd. and Japan Society of Mechanical Engineers. All right reserved.