single-rb.php

JRM Vol.19 No.5 pp. 550-556
doi: 10.20965/jrm.2007.p0550
(2007)

Paper:

Microfluidic Perfusion Culture of Human Hepatocytes

Hiroshi Kimura, Masaki Nishikawa, Takatoki Yamamoto,
Yasuyuki Sakai, and Teruo Fujii

Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan

Received:
April 18, 2007
Accepted:
June 4, 2007
Published:
October 20, 2007
Keywords:
perfusion cell culture, microfluidic device, PDMS, Hep-G2 cell
Abstract
Analysis using human cells has been widely used in place of animal experiments. To obtain culture environments closer to those with in vivo, perfusion culture using microfluidic devices is being studied instead of stationary culture such as in a culture dish. With conventional perfusion culture with microfluidic devices, pumping system is externally provided, causing a large dead volume of culture medium. As a result, applied drugs as well as metabolites and signal transmitters from cells are diluted. We minimized this dead volume by embedding micropumps within the device to realize a high concentration of metabolites and signal transmitters from cells by perfusion with small amounts of culture medium and its effects on the cells. Using Hep-G2, established from a human hepatoma, we successfully formed Hep-G2 spheroids which are not observed in conventional culture. Evaluating activity from the DNA amount and albumin produced, we found that Hep-G2 spheroids formed in our device showed higher activity than conventional 2-dimensional culture. We demonstrated that the functionally highly integrated on-chip perfusion cell culture microdevice provided cells with a culture environment close to that in vivo and promoted morphological change and expression of high activity in cells.
Cite this article as:
H. Kimura, M. Nishikawa, T. Yamamoto, Y. Sakai, and T. Fujii, “Microfluidic Perfusion Culture of Human Hepatocytes,” J. Robot. Mechatron., Vol.19 No.5, pp. 550-556, 2007.
Data files:
References
  1. [1] A. Ghanem and M. L. Shuler, “Characterization of a perfusion reactor utilizing mammalian cells on microcarrier beads,” Biotechnol. Prog., Vol.16, (3), pp. 471-479, 2000.
  2. [2] S. Kaihara, S. Kim, B. S. Kim, D. J. Mooney, K. Tanaka, and J. P. Vacanti, “Survival and function of rat hepatocytes cocultured with nonparenchymal cells or sinusoidal endothelial cells on biodegradable polymers under flow conditions,” J. Pediatr. Surg., Vol.35, (9), pp. 1287-1290, 2000.
  3. [3] S. S. Kim, C. A. Sundback, S. Kaihara, M. S. Benvenuto, B. S. Kim, D. J. Mooney, and J. P. Vacanti, “Dynamic seeding and in vitro culture of hepatocytes in a flow perfusion system,” Tissue Eng., Vol.6, (1), pp. 39-44, 2000.
  4. [4] S. H. Choi, O. Fukuda, A. Sakoda, and Y. Sakai, “Enhanced cytochrome P450 capacities of Caco-2 and Hep G2 cells in new coculture system under the static and perfused conditions: evidence for possible organ-to-organ interactions against exogenous stimuli,” Materials Science and Engineering: C, Vol.24, (3), pp. 333-339, 2004.
  5. [5] J. T. Borenstein, H. Terai, K. R. King, K. E. J. Weinberg, M. R. Kaazempur-Mofrad, and J. P. Vacanti, “Microfabrication technology for vascularized tissue engineering,” Biomedical Microdevices, Vol.4, (3), pp. 167-175, 2002.
  6. [6] J. Park, F. Berthiaume, M. Toner, M. L. Yarmush, and A. W. Tilles, “Microfabricated grooved substrates as platforms for bioartificial liver reactors,” Biotechnol. Bioeng., Vol.90, (5), pp. 632-644, 2005.
  7. [7] K. Viravaidya and M. L. Shuler, “Incorporation of 3T3-L1 cells to mimic bioaccumulation in a microscale cell culture analog device for toxicity studies,” Biotechnol. Prog., Vol.20, (2), pp. 590-597, 2004.
  8. [8] A. W. Tilles, H. Baskaran, P. Roy, M. L. Yarmush, and M. Toner, “Effects of oxygenation and flow on the viability and function of rat hepatocytes cocultured in a microchannel flat-plate bioreactor,” Biotechnol. Bioeng., Vol.73, (5), pp. 379-389, 2001.
  9. [9] G. Mehta, K. Mehta, D. Sud, J. W. Song, T. Bersano-Begey, N. Futai, Y. S. Heo, M. A. Mycek, J. J. Linderman, and S. Takayama, “Quantitative measurement and control of oxygen levels in microfluidic poly(dimethylsiloxane) bioreactors during cell culture,” Biomed. Microdevices, Vol.9, (2), pp. 123-134, 2007.
  10. [10] M. J. Powers, K. Domansky, M. R. Kaazempur-Mofrad, A. Kalezi, A. Capitano, A. Upadhyaya, P. Kurzawski, K. E. Wack, D. B. Stolz, R. Kamm, and L. G. Griffith, “A microfabricated array bioreactor for perfused 3D liver culture,” Biotechnol. Bioeng., Vol.78, (3), pp. 257-269, 2002.
  11. [11] E. Leclerc, K. S. Furukawa, F. Miyata, Y. Sakai, T. Ushida, and T. Fujii, “Fabrication of microstructures in photosensitive biodegradable polymers for tissue engineering applications,” Biomaterials, Vol.25, (19), pp. 4683-4690, 2004.
  12. [12] S. Ostrovidov, J. Jiang, Y. Sakai, and T. Fujii, “Membrane-based PDMS microbioreactor for perfused 3D primary rat hepatocyte cultures,” Biomed. Microdevices, Vol.6, (4), pp. 279-287, 2004.
  13. [13] Y. C. Toh, C. Zhang, J. Zhang, Y. M. Khong, S. Chang, V. D. Samper, D. van Noort, D. W. Hutmacher, and H. Yu, “A novel 3D mammalian cell perfusion-culture system in microfluidic channels,” Lab Chip, Vol.7, (3), pp. 302-309, 2007.
  14. [14] K. S. Ryu, K. Shaikh, E. Goluch, Z. Fan, and C. Liu, “Micro magnetic stir-bar mixer integrated with parylene microfluidic channels,” Lab Chip, Vol.4, (6), pp. 608-613, 2004.
  15. [15] A. K. Agarwal, S. S. Sridharamurthy, D. J. Beebe, and H. Jiang, “Programmable autonomous micromixers and micropumps,” Journal of Microelectromechanical Systems, Vol.14, (6), pp. 1409-1421, 2005.
  16. [16] H. Lorenz, M. Despont, N. Fahrni, J. Brugger, P. Vettiger, and P. Renaud, “High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS,” Sensors and Actuators A: Physical, Vol.64, (1), pp. 33-39, 1998.
  17. [17] K. Hosokawa, T. Fujii, and I. Endo, “Handling of picoliter liquid samples in a Poly(dimethylsiloxane)-based microfluidic device,” Anal. Chem., Vol.71, (20), pp. 4781-4785, 1999.
  18. [18] D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in Poly (dimethylsiloxane),” Anal. Chem., Vol.70, (23), pp. 4974-4984, 1998.
  19. [19] C. F. Brunk, K. C. Jones, and T. W. James, “Assay for nanogram quantities of DNA in cellular homogenates,” Anal Biochem, Vol.92, (2), pp. 497-500, 1979.
  20. [20] M. Suzuki, K. Ichikawa, A. Sakoda, and Y. Sakai, “Long-term culture of primary rat hepatocytes with high albumin secretion using membrane-supported collagen sandwich,” Cytotechnology, Vol.11, (3), pp. 213-218, 1993.
  21. [21] M. J. Powers, K. Domansky, M. R. Kaazempur-Mofrad, A. Kalezi, A. Capitano, A. Upadhyaya, P. Kurzawski, K. E. Wack, D. B. Stolz, R. Kamm, and L. G. Griffith, “A microfabricated array bioreactor for perfused 3D liver culture,” Biotechnol. Bioeng., Vol.78, (3), pp. 257-269, 2002.
  22. [22] K. N. Chua, W. S. Lim, P. Zhang, H. Lu, J. Wen, S. Ramakrishna, K. W. Leong, and H. Q. Mao, “Stable immobilization of rat hepatocyte spheroids on galactosylated nanofiber scaffold,” Biomaterials, Vol.26, (15), pp. 2537-2547, 2005.
  23. [23] J. Fukuda and K. Nakazawa, “Orderly arrangement of hepatocyte spheroids on a microfabricated chip,” Tissue Eng., Vol.11, (7-8), pp. 1254-1262, 2005.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Apr. 18, 2024