single-rb.php

JRM Vol.16 No.2 pp. 163-170
doi: 10.20965/jrm.2004.p0163
(2004)

Paper:

Conveyor for Pneumatic Two-Dimensional Manipulation Realized by Arrayed MEMS and its Control

Yamato Fukuta*, Masashi Yanada**, Atsushi Ino**,
Yoshio Mita***, Yves-André Chapuis*, Satoshi Konishi**,
and Hiroyuki Fujita*

*Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan

**Department of Mechanical Engineering, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan

***Department of Electrical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

Received:
December 24, 2003
Accepted:
February 16, 2004
Published:
April 20, 2004
Keywords:
microelectromechanical systems (MEMS), micro manipulation, pneumatic, conveyance system, autonomous distributed system (ADS)
Abstract

We propose a microconveyor based on silicon microelectromechanical systems (MEMS) technology and demonstrate successful operation of the microconveyor. Microactuators work as air nozzles, which generate directed air flow by changing the pathways of compressed nitrogen gas. One-dimensional conveyance of an object 2.1mm × 4.1mm × 200μm weighing approximately 4mg is demonstrated with a directed air flow of 17kPa. Using a two-dimensional conveyor, we levitate and move an object 3mm × 3mm × 100μm weighing approximately 2mg using a continuous air flow. Conveyance toward the force equilibrium point was achieved with a regularly pulsed air flow. We are now studying full control of two-dimensional conveyance. We also propose control by actuating air nozzles to change the direction of air flow and move the equilibrium point to transfer the object to the desired point.

Cite this article as:
Yamato Fukuta, Masashi Yanada, Atsushi Ino,
Yoshio Mita, Yves-André Chapuis, Satoshi Konishi, and
and Hiroyuki Fujita, “Conveyor for Pneumatic Two-Dimensional Manipulation Realized by Arrayed MEMS and its Control,” J. Robot. Mechatron., Vol.16, No.2, pp. 163-170, 2004.
Data files:
References
  1. [1] M. Ataka, A. Omodaka, N. Takeshima and H. Fujita, “Fabrication and Opereation of Polyimide Bimorph Actuators for Ciliary motion System,” IEEE/ASME Journal of Microelectromechanical System, vol. 2, No. 4, pp.146-150, 1993.
  2. [2] C. Liu, T. Tasao, Y. C. Tai, W. Liu, P. Will and C. M. Ho, “A micromachined Permalloy Magnetic Actuator Array for Micro Robotics Assembly Systems” In Proc. IEEE International Conference of Solid-State Sensors and Actuators (Transducers ‘95), Stockholm, Sweden, pp.328-331, 1995.
  3. [3] H. Nakazawa, Y. Watanabe, O. Morita, M. Edo, M. Yushima and E. Yonezawa, “Elactromagnetic Mircro-Parts Conveyaer with Coil-Diode Modules,” In Proc. IEEE International Conference of Solid-State Sensors and Actuators (Transducers ‘99), Miyazaki, Japan, pp.1192-1195, 1999.
  4. [4] T. Inoue, Y. Hamasaka, I. Shimoyama and H. Miura, “Micromanipulation Using a Microcoil Array,” In Proc. the IEEE International Conference on Robotics and Automation (ICRA), pp.96-101, 1996.
  5. [5] M. Komori and T. Tachihara, “A magnetically driven linear microactuator with new driving method,” Trans. of IEEJ, vol.120-A, No.3, pp.283-288, 2000.
  6. [6] J. W. Suh, R. B. Darling, K-F. Böhringer, B. R. Donald and H. Baltes, “CMOS Integrated Ciliary Actuator Array as a General-Purpose Micromanipulation Tool for Small Objects,” IEEE/ASME Journal of Microelectromechanical System, Vol.8, No.4, pp.483-496, 1999.
  7. [7] J. W. Suh, S. F. Glander, R. B. Darling, C. W. Storment and G. T. A. Kovacs, “Organic thermal and electrostatic ciliary micro actuator array for object manipulation,” Sensor and Actuators A vol.58 pp.51-60, 1997.
  8. [8] Y. K. Kim, M. Katsurai and H. Fujita “A superconducting actuator using the Meissner effect,” Sensors and Actuators, vol. 20, 1-2, 15, pp.33-40, 1989.
  9. [9] K. S. J. Pister, R. S. Fearing and R. T. Howe, “A Planer Air Levitated Electrostatic Actuator System,” In Proc. IEEE Micro Electro Mechanical System, Napa Valley, California, pp.67-71, 1990.
  10. [10] S. Konishi and H. Fujita, “A Conveyance System using Air Flow Based on the Concept of Distributed Micro Motion Systems,” IEEE/ASME Journal of Microelectromechanical System, vol.3, No.2, pp.54-58, 1994.
  11. [11] K. F Böhringer, B. R. Donald, L. E. Kavraki and F. Lamiraux, “Part Orientation with One or Two Stable Equilibria Using Programmable Force Fields,” IEEE Transactions on Robotics and Autonmation, Vol.16, 2, April, pp.157-170, 2000.
  12. [12] H. Oyobe and Y. Hori, “Object Conveyance System “Magic Carpet” Consisting of 64 Linear Actuators –Object Position Feedback Control with Object Position Estimation–” In Proc. 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM2001), pp.1307-1312, 2001.
  13. [13] S. Konishi, Y. Mizoguchi, M. Harada and K. Ohno, “Experimental Investigation of Distributed Conveyance System using Air Flow” In Proc. 1998 International Symposium on Micro mechatoronics and Human Science, Nagoya, Japan, pp.195-200, 1998.
  14. [14] S. Konishi, Y. Mizoguchi and K. Ohno, “Development of a non-contact conveyance system composed of distributed nozzle units” In Proc. 7th International Workshop on Emerging Technologies and Factory Automation, Barcelona, Spain, pp. 593-598, 1999.
  15. [15] M. Arai, Y. Fukuta, A.Tixier, Y. Mita and H. Fujita, “An Air-flow Actuator Array Realized by Bulk Micromachining Technique,” In Proc. IEEJ the 19th Sensor Symposium, Kyoto, pp.447-450, 2002.
  16. [16] E. H. Klaassen, K. Petersen, J. M. Noworolski, J. Logan, N. I. Maluf, J. Brown, C. Storment, W. McCulley and G. T. A. Kovacs, “Silicon Fusion Bonding and Deep Reactive Ion Etching; A New Technology for Microstructures,” In Proc. IEEE International Conference of Solid-State Sensors and Actuators (Transducers ‘95), Stockholm, Sweden, pp.328-331, 1995.
  17. [17] Y. Fukuta, Y. Mita, M. Arai and H. Fujita, “Pneumatic Two-Dimensional Conveyance System for Autonomous Distributed MEMS,” In Proc. IEEE International Conference of Solid-State Sensors and Actuators (Transducers ‘03), Boston, pp.1019-1022, 2003.
  18. [18] Y. Fukuta, H. Fujita and H. Toshiyoshi, “Vapor Hydrofluoric acid (HF) Sacrificial Release Technique for Micro-Electro-Mechanical Systems (MEMS) Using Labware,” Jpn. J. Appl. Phys. Vol.42, part 1. No.6A, pp.3690-3594, 2003.
  19. [19] T. Fukuda, K. Sekiyama, Y. Hasebe, Y. Hasegawa, S. Shibata, H. Yamamoto and Y. Inada, “Distributed Control of Flexible Transfer system using Learning Automata,” In. Proc. the IEEE International Conference on Robotics and Automation (ICRA), pp.96-101, 1999.
  20. [20] Y. Mita, A. Kaiser, P. Garda, B. Stefanelli and H. Fujita, “Sensor-Microactuator Collocated MEMS for Fully-Integrated Microsystems,” In Proc. International Power Electronics Conference (IPEC), Tokyo, pp.1422-1427, 2000.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jun. 17, 2021