single-rb.php

JRM Vol.16 No.2 pp. 155-162
doi: 10.20965/jrm.2004.p0155
(2004)

Paper:

Calibration of Carbon Nanotube Probes for Pico-Newton Order Force Measurement Inside a Scanning Electron Microscope

Masahiro Nakajima, Fumihito Arai, Lixin Dong,
and Toshio Fukuda

Department of Micro System Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

Received:
October 20, 2003
Accepted:
December 5, 2003
Published:
April 20, 2004
Keywords:
force measurement, pico-Newton, carbon nanotubes, nanomanipulation, scanning electron microscope
Abstract

A method is presented for pico-Newton (pN) order force measurement using a carbon nanotube (CNT) probe, which is calibrated by electromechanical resonance. A CNT probe is constructed by attaching a CNT to the end of a tungsten needle or an atomic force microscope (AFM) cantilever using nanorobotic manipulators inside a field-emission scanning electron microscope (FE-SEM). Conductive electron-beam-induced deposition (EBID) is used for the fixation of CNTs with an internal vaporized precursor W(CO)6. For manipulating them easily and quickly, CNTs are dispersed in ethanol by ultrasonic waves and oriented on copper electrodes by electrophoresis. The elastic moduli of CNT probes are calibrated for use as a force measurement probe by electrically exciting at fundamental frequency. We analyzed the resolution of force measurement using a CNT probe. This force measurement can be used to characterize the mechanical properties of nanostructures and to measure friction or exfoliation forces in nanometer order.

Cite this article as:
M. Nakajima, F. Arai, L. Dong, and <. Fukuda, “Calibration of Carbon Nanotube Probes for Pico-Newton Order Force Measurement Inside a Scanning Electron Microscope,” J. Robot. Mechatron., Vol.16, No.2, pp. 155-162, 2004.
Data files:
References
  1. [1] A. Kishino and T. Yanagida, “Force Measurements by Micromanipulation of a Single Actin Filament by Glass Needles,” Nature, vol. 334, pp. 74-76, 1988.
  2. [2] K. Koyano, T. Kasaya, H. Miyazaki, and T. Saito, “Measurement System for Force Acting on Micro Oject,” The 13st Annual Conference of the Robotics Society of Japan, pp.803-804, 1995-11.
  3. [3] S. Fujisawa, E. Kishi, Y. Sugawara, and S. Morita, “Atomic-scale Friction Observed with a Two-dimensional Frictional-force Microscope,” Phys. Rev. B, vol. 51 pp. 7849-7857, 1995.
  4. [4] K. Visscher, M. J. Schnitzer, and S. M. Block, “Single Kinesin Molecules Studied with a Molecular Force Clamp,” Nature, vol.400, pp. 184-189, 1999.
  5. [5] F. Arai, M. Nakajima, L. X. Dong, and T. Fukuda, “Force Measurement with Pico-Newton Order Resolution Using a Carbon Nanotube Probe,” Proc. of the Int. Symp. on Micromechatronics and Human Science, pp. 105-110, 2002.
  6. [6] S. Iijima, “Helical Microtubules of Graphitic Carbon,” Nature, vol.354, pp. 56-58, 1991.
  7. [7] J. P. Lu, “Elastic Properties of Carbon Nanotubes and Nanoropes,” Phys. Rev. Lett., vol. 79, pp. 1297-1300, 1997.
  8. [8] M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, “Exceptionally High Young’s Modulus Observed for Individual Carbon Nanotubes,” Nature, vol. 381, pp. 678-680, 1996.
  9. [9] M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, “Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load,” Science, vol. 287, pp. 637-640 2000.
  10. [10] E. W. Wong, P. E. Sheehan, and C. M. Lieber, “Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes,” Science, vol. 277, pp. 1971-1975, 1997.
  11. [11] P. Poncharal, Z. L. Wang, D. Ugarte, and W. A. de Heer, “Electrostatic Deflections and Electromechanical Resonaces of Carbon Nanotubes,” Science, vol. 283, pp. 1513-1516, 1999.
  12. [12] L. X. Dong, F. Arai, and T. Fukuda, “Nanoassembly of Carbon Nanotubes through Mechanochemical Nanorobotic Manipulations,” Jpn. J. Appl. Phys., vol. 42, pp. 295-298, 2003.
  13. [13] L. X. Dong, F. Arai, and T. Fukuda, “3-D Nanorobotic Manipulation of Nanometer-scale Objects,” J. of Robotics and Mechatronics, vol.13, pp. 1146-1153, 2001.
  14. [14] L. X. Dong, F. Arai, and T. Fukuda, “3D Nanoassembly of Carbon Nanotubes trough Nanorobotic Manipulations,” Proc. of the 2002 IEEE Int. Conf. on Robotics and Automation, pp. 1477-1482, 2002.
  15. [15] L. X. Dong, F. Arai, and T. Fukuda, “Electron-beam-induced deposition with carbon nanotube emitters,” Appl. Phys. Lett., vol. 81, pp. 1919-1921, 2002.
  16. [16] F. Arai, P. Liu, L. X. Dong, M. Nakajima, and T. Fukuda, “Electron-Beam-Induced Deposition of Conductive Nanostructures with Carbon Nanotube Emitters,” Proc. of the 2003 Third IEEE Int. Conf. on Nanotechnology, pp. 811-814, 2003.
  17. [17] Y. Saito, T. Yoshikawa, and M. Inagaki, “Growth and Structure of Graphitic Tubules and Polyhedral Particles in Arc-Discharge,” Chem. Phys. Lett., vol. 204, pp. 277-282, 1993.
  18. [18] P. M. Ajayan, O. Stephan, C. Colliex, and D. Trauth, “Aligned Carbon Nanotube Arrays Formed by Cutting a Polymer Resin-Nanotube Composite,” Science, vol. 265, pp. 1212-1214, 1994.
  19. [19] W. A. de Heer, W. S. Bacsa, A. Chatelain, T. Gerfin, R. Humphrey-Baker, L. Forro, and D. Ugarte, “Aligned Carbon Nanotube Films: Production and Optical and Electronic Properties,” Science, vol. 268, pp. 845-847, 1995.
  20. [20] W. Z. Li, S. S. Qian, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A. Zhao, and G. Wang, “Large-Scale Synthesis of Aligned Carbon Nanotubes,” Science, vol. 274, pp. 1701-1703, 1996.
  21. [21] Z. F. Ren, Z. P. Huang, J. W. Xu, J .H. Wang, P. Bush, M. P. Siegal, and P. N. Provencio, “Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass,” Science, vol. 282, pp. 1105-1107 1999.
  22. [22] K. Yamamoto, S. Akita, and Y. Nakayama, “Orientation of Carbon Nanotubes Using Electrophoresis,” Jpn. J. Appl. Phys., vol. 35, pp. 917-918, 1996.
  23. [23] H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, and R. E. Smalley, “Nanotubes as Nanoprobes in Scanning Probe Microscopy,” Nature, vol. 384, pp. 147-150, 1996.
  24. [24] G. Gao, T. Cagin, and W. A. Goddard III, “Energetics, Structure, Mechanical and Vibrational Properties of Single Walled Carbon Nanotubes (SWNT),” Fifth Foresight Conference on Molecular Nanotechnology, 1997.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, IE9,10,11, Opera.

Last updated on Apr. 22, 2019