JDR Vol.10 No.1 pp. 59-66
doi: 10.20965/jdr.2015.p0059


Plate Convergence and Block Motions in Mindanao Island, Philippine as Derived from Campaign GPS Observations

Takahiro Ohkura*1, Takao Tabei*2, Fumiaki Kimata*3,
Teresito C. Bacolcol*4, Yasuhiko Nakamura*5, Artemio C. Luis, Jr.*4,
Alfie Pelicano*4, Robinson Jorgio*4, Milo Tabigue*4,
Magdalino Abrahan*4, Eleazar Jorgio*4, and Endra Gunawan*6

*1Aso Volcanological Laboratory, Kyoto University, 5280 Minami-Aso, Aso, Kumamoto 869-1404, Japan

*2Department of Applied Science, Kochi University, Kochi, Japan

*3Tono Research Institute of Earthquake Science, Gifu, Japan

*4Philippine Institute of Volcanology and Seismology (PHIVOLCS), Philippines

*5Graduate School of Integrated Arts and Sciences, Kochi University, Kochi, Japan

*6Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan

August 12, 2014
January 14, 2015
February 1, 2015
GPS, Philippine fault, Philippine trench, Block motions
We conducted yearlyGlobal Positioning System(GPS) campaigns in the eastern part of Mindanao from March 2010 to March 2014. The obtained station velocities with respect to the Sunda plate (SU) show that WNW motions are dominant due to the convergence of the Philippine Sea plate (PHS). However, it was found that elastic deformations caused by a full coupling of the plate interface down to 80 km could explain a maximum of only 29% of the observed station velocities. In order to interpret the displacement pattern, we applied a rigid block rotation model and determined the Euler vector. As a result, we determined that Mindanao Island could be divided into at least three blocks and that the Philippine fault is one of the block boundaries. Although it was not possible to determine the coupling ratio at the Philippine trench, the dislocation pattern of the Philippine fault showed along-strike variation in Mindanao Island.
Cite this article as:
T. Ohkura, T. Tabei, F. Kimata, T. Bacolcol, Y. Nakamura, A. Luis, Jr., A. Pelicano, R. Jorgio, M. Tabigue, M. Abrahan, E. Jorgio, and E. Gunawan, “Plate Convergence and Block Motions in Mindanao Island, Philippine as Derived from Campaign GPS Observations,” J. Disaster Res., Vol.10 No.1, pp. 59-66, 2015.
Data files:
  1. [1] T. Tabei, F. Kimata, and T. Ohkura, “Estimation of plate convergent rates in the Philippines-eastern Indonesia deformation zone from GPS results,” Abstract of Japan Geoscience Union meeting 2008, T229-006, 2008.
  2. [2] C. R. Allen, “Circum-Pacific faulting in the Philippines-Taiwan Region,” J. Geophys. Res., Vol.67, pp. 4795-4812, 1962.
  3. [3] M. L. P. Bautista and K. Oike, “Estimation of the magnitudes and epicenters of Philippine historical earthquakes,” Tectonophysics, Vol.317, pp. 137-169, 2000.
  4. [4] T. I. Allen, K. D. Marano, P. S. Earle, and D. J. Wald, “PAGERCAT: A composite earthquake catalog for calibrating global fatality models,” Seismol. Res. Lett., Vol.80, pp. 57-62, 2009.
  5. [5] N. T. Ramos, H. Tsutsumi, J. S. Perez, and P. P. Bermas Jr., “Uplifted marine terraces in Davao Oriental Province, Mindanao Island, Philippines and their implications for large prehistoric offshore earthquakes along the Philippine trench,” Journal of Asian Earth Sciences, Vol.45, pp. 114-125, 2012.
  6. [6] C. Rangin, X. Le Pichon, S. Mazzotti, M. Pubellier, N. Chamot-Rooke, M. Aurelio, A. Walpersdorf, and R. Quebral, “Plate convergence measured by GPS across the Sundaland / PhilippineSea Plate deformed boundary: the Philippines and eastern Indonesia,” Geophys. J., Vol.139, pp. 296-316, 1999.
  7. [7] M. A. Aurelio, “Shear partitioning in the Philippines: Constraints from Philippine Fault and global positioning system data,” Island Arc, Vol.9, pp. 584-597, 2000.
  8. [8] W. Simons, B. Ambrosius, R. Noomen, D. Angermann, P. Wilson, M. Becker, E. Reinhart, A. Walpersdorf, and C. Vigny, “Observing plate motions in SE Asia: Geodetic results of the GEODYSSEA project,” Geophys. Res. Lett., Vol.26, No.14, pp. 2081-2084, 1999.
  9. [9] H. Tsutsumi and J. S. Perez, “Large-scale active fault map of the Philippine fault based on aerial photograph interpretation,” Active Fault Research, Vol.39, pp. 29-37, 2013.
  10. [10] D. F. Argus, R. G. Gordon, and C. DeMets, “Geologically current motion of 56 plates relative to the no-net-rotation reference frame,” Geochemistry, Geophysics, Geosystems, 2011.
  11. [11] Z. Altamimi, X. Collilieux, J. Legrand, B. Garayt, and C. Boucher, “ITRF2005: A new release of the Int. Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters,” J. Geophys, Res., Vol.112, pp. B09401, 2007.
  12. [12] Z. Altamimi, X. Collilieux, and L. Metivier, “ITRF2008: an improved solution of the international terrestrial reference frame,” J. Geodesy, Vol.85, pp. 457-473, 2011.
  13. [13] T. J. Fitch, “Plate convergence, transcurrent faults, and internal deformation adjacent to Southeast Asia and the western Pacific,” J. Geophys. Res., Vol.77, No.23, pp. 4432-4460, 1972.
  14. [14] G. P. Hayes, D. J. Wald, and R. L. Johnson, “Slab 1.0: A threedimensional model of global subduction zone geometries,” J. Geophys. Res., Vol.117, pp. B01302, 2012.
  15. [15] C. Geuzaine and J. F. Remacle, “Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities,” Int. J. Numer. Meth. Engng, Vol.79, pp. 1309-1331, 2009.
  16. [16] C. DeMets, R. G. Gordon, and D. F. Argus, “Geologically current plate motions,” Geophys. J. Int., Vol.181, No.1, pp. 1-80, 2010.
  17. [17] B. J.Meade, “Algorithms for the calculation of exact displacements, strain, an stresses for triangular dislocation element in a uniform elastic half space,”Comput. Geosci., Vol.33, pp. 1064-1075, 2007.
  18. [18] G. Galgana, M. Hamburger, R. McCaffrey, E. Corpuz, and Q. Chen, “Analysis of Crustal Deformation in Luzon, Philippines using Geodetic Observations and Focal Mechanisms,” Tectonophys., Vol.432, pp. 63-87, 2007.
  19. [19] H. Tsutsumi, Y. Fukushima, J. S. Perez, and J. J. Lienkaemper, “Aseismic creeping of the Philippine fault in Leyte Island, Philippines, revealed by field observation and InSAR analysis,” Japan Geoscience Union Meeting, 2013.
  20. [20] T. Duquesnoy, E. Barrier, M. Kasser, M. Aurelio, R. Gaulon, R. S. Punongbayan, and C. Rangin, “Detection of creep along the Philippine Fault: first results of geodetic measurements on Leyte island, central Philippine,” Geophys Res. Letters, Vol.21, pp. 975-978, 1998.
  21. [21] T. Bacolcol, E. Barrier, T. Duquesnoy, A. Aguilar, R. Jorgio, R. de la Cruz, and M. Lasala, “GPS constraints on Philippine fault slip rate in Masbate Island, central Philippines,” Journal of the Geological Society of the Philippines, Vol.60, pp. 1-7, 2005.
  22. [22] J. S. Perez, H. Tsutsumi, M. Cahulogan, D. P. Cabanlit, Ma. I. T. Abigania, and T. Nakata, “Fault distribution, segmentation and earthquake generation potential of the Philippine fault in eastern Mindanao, Philippines,” J. Disaster Res., Vol.10, No.1, 2014 (this issue).
  23. [23] P. Wessel and W. H. F. Smith, “New, improved version of generic mapping tools released,” Eos Trans. AGU, Vol.79, No.47, p. 579, 1998.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Apr. 22, 2024