JDR Vol.10 No.1 pp. 67-73
doi: 10.20965/jdr.2015.p0067


Continuous GPS Observations on Mindanao

Mikio Tobita*, Hisashi Suito*, Tomokazu Kobayashi*,
Satoshi Kawamoto*, Masayuki Yamanaka*, Akira Suzuki*,
Toshiharu Enya*, Masaki Honda*, Tetsuro Imakiire*,
Artemio Luis**, Alfie Pelicano**, Teresito Bacolcol**,
and Takahiro Ohkura***

*Geospatial Information Authority of Japan, 1 Kitasato, Tsukuba, Ibaraki 305-0811, Japan

**Philippine Institute of Volcanology and Seismology (PHIVOLCS), Philippines

***Aso Volcanological Laboratory, Kyoto University, Japan

July 30, 2014
January 16, 2015
February 1, 2015
GPS, Mindanao, Philippine Sea Plate, Philippine Fault

We installed three continuous GPS stations on Mindanao Island to provide a basis for enhancing the monitoring of crustal movements. Because there are frequent power outages and Internet connections are slow and unstable in this region, the data acquisition had to be improved by taking necessary hardware and software measures. The cGPS observations have revealed displacements related to plate motions, creep of the Philippine Fault, and a large earthquake. Evaluation of detectability of interplate slip has indicated that our cGPS stations have enhanced the monitoring capability advance from Mw7.2 to Mw6.5 on the coast of northeastern Mindanao.

  1. [1] K. Abe, “Instrumental magnitudes of historical earthquakes, 1892 to 1898,” Bull. Seismol. Soc. Am., Vol.84, pp. 415–425, 1994.
  2. [2] T. I. Allen, K. D. Marano, P. S. Earle, and D. J. Wald, “PAGERCAT: A composite earthquake catalog for calibrating global fatality models,” Seismol. Res. Lett., Vol.80, pp. 57–62, 2009, doi:10.1785/gssrl.80.1.57.
  3. [3] M. L. P. Bautista and K. Oike,“Estimation of the magnitudes and epicenters of Philippine historical earthquakes,” Tectonophysics, Vol.317, pp. 137–169, 2000, doi:10.1016/S0040-1951(99)00272-3.
  4. [4] D. F. Argus, R. G. Gordon, and C. DeMets, “Geologically current motion of 56 plates relative to the no-net-rotation reference frame,” Geochemistry, Geophysics, Geosystems, 2011, doi:10.1029/2011GC003751.
  5. [5] T. Bacolcol, E. Barrier, T. Duquesnoy, A. Aguilar, R. Jorgio, R. de la Cruz, and M. Lasala, “GPS constraints on Philippine fault slip rate in Masbate Island, central Philippines,” Journal of the Geological Society of the Philippines, Vol.60, pp. 1-7, 2005.
  6. [6] H. Tsutsumi, Y. Fukushima, J. S. Perez, and J. J. Lienkaemper, “Aseismic creeping of the Philippine fault in Leyte Island, Philippines, revealed by field observation and InSAR analysis,” Japan Geoscience Union Meeting, 2013.
  7. [7] T. Sagiya, “A decade of GEONET: 1994–2003 – The continuous GPS observation in Japan and its impact on earthquake studies,” Earth Planets Space, Vol.56, pp. xxix–xli, 2004.
  8. [8] K. Satake and H. Harjono, “Multi-disciplinary hazard reduction from earthquakes and volcanoes in Indonesia,” J. Disaster Res., Vol.7, No.1, pp. 4-11, 2012.
  9. [9] A. E. Niell, “Global mapping functions for the atmosphere delay at radio wavelengths,” J. Geophys. Res., Vol.101, pp. 3227–3246, 1996.
  10. [10] F. Lyard, F. Lefevre, T. Letellier, and O. Francis, “Modelling the global ocean tides: modern insights from FES2004,” Ocean Dymamics, Vol.56, pp. 394–415, 2006.
  11. [11] Z. Altamimi, X. Collilieux, and L. Métivier, “ITRF2008: an improved solution of the International Terrestrial Reference Frame,” Journal of Geodesy, Vol.85, No.8, pp. 457-473, 2011, doi:10.1007/s00190-011-0444-4.
  12. [12] U. S. Geological Survey, “M7.1 – 4 km SE of Sagbayan, Philippines (BETA),” 2013, [accessed Jun. 22, 2014]
  13. [13] Philippine Institute of Volcanology and Seismology, “Latest earthquake information,” 2013, [accessed Jun. 22, 2014]
  14. [14] T. Kobayashi, “Remarkable ground uplift and reverse fault ruptures for the 2013 Bohol earthquake (Mw7.1), Philippines, revealed by SAR pixel offset analysis,” Geoscience Letter, Vol.1, No.7, 2014, doi:10.1186/2196-4092-1-7.
  15. [15] T. Nishimura, M. Sato, and T. Sagiya, “Global positioning system (GPS) and GPS-Acoustic observations: insight into slip along the subduction zones around Japan,” Annu. Rev. Earth Planet. Sci., Vol.42, pp. 653-674, 2014.
  16. [16] Y. Okada, “Surface deformation due to shear and tensile faults in a hald-space,” Bull. Seis. Soc. Am., Vol.75, pp. 1135-1154, 1985.
  17. [17] G. P. Hayes, D. J. Wald, and R. L. Johnson, “Slab 1.0: A threedimensional model of global subduction zone geometries,” J. Geophys. Res., Vol.117, B01302, 2012, doi:10.1029/2011JB008524.
  18. [18] H. Kanamori, and D. L. Anderson, “Theoretical basis of some empirical relations in seismology,” Bull. Seismol. Soc. Am., Vol.65, pp. 1073-1095, 1975.
  19. [19] G. F. Sella, T. H. Dixon, and A. Mao, “REVEL: A model for recent plate velocities from space geodesy,” J. Geophys. Res., Vol.107, No.B4, p. 2081, 2002, 10.1029/2000JB000033.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, IE9,10,11, Opera.

Last updated on Sep. 20, 2017