JDR Vol.9 No.6 pp. 961-967
doi: 10.20965/jdr.2014.p0961


Simulation of Tsunami Inundation in Central Peru from Future Megathrust Earthquake Scenarios

Erick Mas*1, Bruno Adriano*2, Nelson Pulido*3,
Cesar Jimenez*4, and Shunichi Koshimura*1

*1Laboratory of Remote Sensing and Geoinformatics for Disaster Management, International Research Institute of Disaster Science, Tohoku University, Aoba 468-1, Aramaki, Aoba-ku, Sendai, Miyagi, Japan

*2Graduate School of Engineering, Tohoku University, Miyagi, Japan

*3National Research Institute for Earth Science and Disaster Prevention (NIED), Ibaraki, Japan

*4Universidad Nacional Mayor de San Marcos Fenlab., Lima, Peru

July 1, 2014
September 19, 2014
December 1, 2014
tsunami simulation, megathrust earthquake, tsunami hazard, Peru
We estimated, from twelve scenarios of potential megathrust earthquakes, the tsunami impact on the Lima-Callao region in Central Peru. In addition, we conducted hazard mapping using the local envelope of the maximum inundation simulated in these scenarios. The deterministic approach is supported by the decades of geodetic measurements in this area that characterize the interseismic strain build up since historical megathrust earthquakes. The earthquake scenarios for simulation proposed in [1] introduce spatially correlated short-wavelength slip heterogeneities to a first slip model in [2] calculated from the interseismic coupling (ISC) distribution in Central Peru. The ISC was derived from GPS monitoring data as well as from historical earthquake information. The results of strong ground motion simulations in [1] reported that the slip scenario with the deepest average peak values along the strike (Mw = 8.86) generates the largest PGA in the Lima-Callao area. In this study, we found from tsunami simulation results that the slip model with the largest peak slip at a shallow depth (Mw = 8.87) yielded the highest tsunami inundation. Such differences in maximum scenarios for peak ground acceleration and tsunami height reveal the importance of a comprehensive assessment of earthquake and tsunami hazards in order to provide plausible worstcase scenarios for disaster risk management and education.
Cite this article as:
E. Mas, B. Adriano, N. Pulido, C. Jimenez, and S. Koshimura, “Simulation of Tsunami Inundation in Central Peru from Future Megathrust Earthquake Scenarios,” J. Disaster Res., Vol.9 No.6, pp. 961-967, 2014.
Data files:
  1. [1] N. Pulido, H. Tavera, Z. Aguilar, D. Calderon, M. Chlieh, T. Sekiguchi, S. Nakai, and F. Yamazaki, “Mega-earthquakes rupture scenarios and strong motion simulations for Lima, Peru,” in The International Symposium for CISMID 25th Anniversary, pp. 1-8, 2012.
  2. [2] N. Pulido, H. Tavera, H. Perfettini, M. Chlieh, Z. Aguilar, S. Aoi, S. Nakai, and F. Yamazaki, “Estimation of Slip Scenarios for Megathrust Earthquakes: A Case Study for Peru,” in 4th IASPEI/IAEE International Symposium, (Santa Barbara, CA, USA), pp. 1-6, 2011.
  3. [3] P. Lockridge, “Tsunamis in Peru-Chile,” Tech. Rep. July, National Geophysical Data Center, 1985.
  4. [4] M. Spiske, J. Piepenbreier, C. Benavente, A. Kunz, H. Bahlburg, and J. Steffahn, “Historical tsunami deposits in Peru: Sedimentology, inverse modeling and optically stimulated luminescence dating,” Quaternary International, Vol.305, pp. 31-44, Aug. 2013.
  5. [5] M. Chlieh, H. Perfettini, H. Tavera, J.-P. Avouac, D. Remy, J.-M. Nocquet, F. Rolandone, F. Bondoux, G. Gabalda, and S. Bonvalot, “Interseismic coupling and seismic potential along the Central Andes subduction zone,” Journal of Geophysical Research, Vol.116, pp. 1-21, Dec. 2011.
  6. [6] N. Pulido, Z. Aguilar, H. Tavera, M. Chlieh, D. Calderón, T. Sekiguchi, S. Nakai, and F. Yamazaki, “Source models scenarios and strong ground motion for future mega-earthquakes: Application to Lima, Central Peru,” Bulletin of the Seismological Society of America (in review).
  7. [7] B. Adriano, E. Mas, S. Koshimura, Y. Fujii, S. Yauri, C. Jimenez, and H. Yanagisawa, “Tsunami Inundation Mapping in Lima , for Two Tsunami Source Scenarios,” Journal of Disaster Research, Vol.8, No.2, pp. 274-284, 2013.
  8. [8] W. H. Berninghausen, “Tsunamis reported from the West coast of South America,” Bulletin of the Seismological Society of America, Vol.52, No.4, pp. 915-921, 1962.
  9. [9] L. Dorbath, A. Cisternas, and C. Dorbath, “Assessment of the size of large and great historical earthquakes in peru,” Bulletin of the Seismological Society of America, Vol.80, No.3, pp. 551-576, 1990.
  10. [10] J. Carpio and H. Tavera, “Estructura de un Catalogo de Tsunamis para el Peru. Basado en el Catalogo de Gusiakov (2002),” Boletin de la Sociedad Geologica del Peru, Vol.94, pp. 45-59, 2002.
  11. [11] E. A. Kulikov, A. B. Rabinovich, and R. E. Thomson, “Estimation of Tsunami Risk for the Coasts of Peru and Northern Chile,” Natural Hazards, Vol.35, pp. 185-209, June 2005.
  12. [12] E. A. Okal, J. C. Borrero, and C. E. Synolakis, “Evaluation of Tsunami Risk from Regional Earthquakes at Pisco, Peru,” Bulletin of the Seismological Society of America, Vol.96, pp. 1634-1648, Oct. 2006.
  13. [13] J.-M. Nocquet, M. Chlieh, P. Mothes, F. Rolandone, P. Jarrin, D. Cisneros, A. Alvarado, L. Audin, F. Bondoux, X. Martin,Y. Font, M. Régnier, M. Vallée, T. Tran, C. Beauval, J. M. n. Mendoza, W. Martinez, H. Tavera, and H. Yepes, “Motion of continental slivers and creeping subduction in the northern Andes,” Nature Geoscience, Vol.7, pp. 1-5, April, 2014.
  14. [14] C. Jimenez, N. Moggiano, E. Mas, B. Adriano, S. Koshimura, Y. Fujii, and H. Yanagisawa, “Seismic Source of 1746 Callao Earthquake from Tsunami Numerical Modeling,” Journal of Disaster Research, Vol.8, No.2, pp. 266-273, 2013.
  15. [15] J. Kuroiwa Horiuchi, “Disaster Reduction. Living in harmony with nature,” Editorial NSG, first edit, ed., 2004.
  16. [16] P. E. Pérez-Mallaína, “Las catástrofes naturales como instrumento de observación social : el caso del terremoto de Lima en 1746,” Anuario de Estudios Americanos, Vol.62, No.2, pp. 47-76, 2005.
  17. [17] E. Mas, B. Adriano, J. Kuroiwa Horiuchi, and S. Koshimura, “Reconstruction process and social issues after the 1746 earthquake and tsunami in Peru: past and present challenges after tsunami events,” in V. Santiago-Fandino, Y. A. Kontar, and Y. Kaneda (Eds.), “Post-Tsunami Hazard Reconstruction and Restoration,” pp. 1-18, Springer Netherlands, 2014 (in press).
  18. [18] H. Perfettini, J.-P. Avouac, H. Tavera, A. Kositsky, J.-M. Nocquet, F. Bondoux, M. Chlieh, A. Sladen, L. Audin, D. L. Farber, and P. Soler, “Seismic and aseismic slip on the central Peru megathrust.,” Nature, Vol.465, pp. 78-81, May 2010.
  19. [19] N. Pulido, Y. Yagi, H. Kumagai, and N. Nishimura, “Rupture process and coseismic deformations of the 27 February 2010 Maule earthquake, Chile,” Earth, Planets and Space, Vol.63, pp. 955-959, Dec. 2011.
  20. [20] F. Imamura, “Review of tsunami simulation with a finite difference method,” in H. Yeh, P. Liu, and C. E. Synolakis (Eds.), “Long-Wave Runup Models,” pp. 25-42, Singapore: World Scientific Publishing Co., 1996.
  21. [21] Y. Okada, “Internal deformation due to shear and tensile faults in a half-space,” Bulletin of the Seismological Society of America, Vol.82, No.2, pp. 1018-1040, 1992.
  22. [22] A. Marín, S. Gelcich, G. Araya, G. Olea, M. Espíndola, and J. C. Castilla, “The 2010 tsunami in Chile: Devastation and survival of coastal small-scale fishing communities,” Marine Policy, Vol.34, pp. 1381-1384, Nov. 2010.
  23. [23] S. L. Bilek, “Invited review paper : Seismicity along the South American subduction zone: Review of large earthquakes, tsunamis, and subduction zone complexity,” Tectonophysics, Vol.495, No.1-2, pp. 2-14, 2010.
  24. [24] A. Muhari, F. Imamura, S. Koshimura, and J. Post, “Examination of three practical run-up models for assessing tsunami impact on highly populated areas,” Natural Hazards and Earth System Science, Vol.11, pp. 3107-3123, Dec. 2011.
  25. [25] V. K. Gusiakov, “Relationship of Tsunami Intensity to Source Earthquake Magnitude as Retrieved from Historical Data,” Pure and Applied Geophysics, Vol.168, pp. 2033-2041, Mar. 2011.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on May. 10, 2024