single-dr.php

JDR Vol.9 No.6 pp. 954-960
(2014)
doi: 10.20965/jdr.2014.p0954

Paper:

Tsunami Waveform Inversion of the 2007 Peru (Mw8.1) Earthquake

Cesar Jimenez*1,*2, Nabilt Moggiano*2, Erick Mas*3,
Bruno Adriano*3, Yushiro Fujii*4, and Shunichi Koshimura*3

*1Universidad Nacional Mayor de San Marcos, FENLAB Av Venezuela s/n, Lima, Perú

*2Direccion de Hidrografia y Navegacion, DHN, Chucuito-Callao, Peru

*3International Research Institute of Disaster Science, Tohoku University, Sendai, Japan

*4International Institute of Seismology and Earthquake Engineering, Building Research Institute, Ibaraki, Japan

Received:
July 1, 2014
Accepted:
September 29, 2014
Published:
December 1, 2014
Keywords:
seismic source, inversion, numerical simulation
Abstract

An earthquake shook the central-southern coast of Peru on August 15, 2007, as a coseismic effect a tsunami was generated, which flooded some villages and beach resorts and killed 3 people. From the analysis and signal processing of 10 tidal records, we obtained the parameters of the seismic source and the initial coseismic deformation through an inversion modeling, in which the synthetic signals are compared with the observed signals by a non-negative least square method. The maximum slip located on the southern part of the rupture geometry is 7.0 m. The calculated scalar seismic moment is M0 = 1.99 × 1021 Nm, equivalent to a magnitude of Mw8.1. We used these parameters to obtain a heterogeneous seismic source model, which was used as initial condition to simulate the tsunami propagation and inundation. We used the field survey observations to validate our source model.

Cite this article as:
C. Jimenez, N. Moggiano, E. Mas, <. Adriano, Y. Fujii, and S. Koshimura, “Tsunami Waveform Inversion of the 2007 Peru (Mw8.1) Earthquake,” J. Disaster Res., Vol.9, No.6, pp. 954-960, 2014.
Data files:
References
  1. [1] C. Jiménez, N. Moggiano, and M. Saavedra, “Fuente sísmica del terremoto de Pisco 2007 a partir de inversión de registros mareográficos,” Revista de Investigación de Física UNMSM, Vol.15, No.2, 2012.
  2. [2] N. Moggiano, “Modelado Numérico del Maremoto de Pisco 2007,” Tesis de Licenciatura, Universidad Nacional Mayor de San Marcos, Peru, 2013.
  3. [3] E. Norabuena, T. Dixon, S. Stein, and C. Harrison, “Deceleration and Nazca-Pacific plate motions,” Geophysical Research Letters, Vol.26, pp. 3405-3408, 1999.
  4. [4] E. Silgado, “Historia de los Sismos más notables ocurridos en el Perú (1513-1974),” Boletín No.3. 1978. Instituto de Geología y Minería. Lima, Perú.
  5. [5] H. Tavera and I. Bernal, “The Pisco (Perú) Earthquake of 15 August 2007,” Seismological Research Letters. Vol.79, No.4, pp. 510-515, 2008.
  6. [6] IOC (International Oceanographic Center). Sea Level Station Monitoring Facility,
    Web: http://www.ioc-sealevelmonitoring.org/ [accessed Dec. 2012]
  7. [7] NOAA, National Data Buoy Center,
    Web: http://www.ndbc.noaa.gov/dart.shtml [accessed Dec. 2012]
  8. [8] C. Jiménez, “Procesamiento digital de señales sísmicas con Matlab,” Revista de Investigación de Física, UNMSM, Vol.10, No.2, pp. 23-28, 2007.
  9. [9] A. Rabinovich, R. Thomson, and F. Stephenson, “The Sumatra Tsunami of 26 December 2004 as observed in the North Pacific and North Atlantic oceans,” Surv Geophys, Vol.27, pp. 647-677, 2006.
  10. [10] GEBCO, General Bathymetric Chart of the Oceans,
    Web: http://www.gebco.net/ [accessed Dec. 2012]
  11. [11] USGS, Nacional Earthquake Information Center,
    http://neic.usgs.gov [accessed Jan. 2013]
  12. [12] A. Tarantola, “Inverse problem theory and methods for model parameter estimation,” Ed. Society for Industrial and Applied Mathematics. Philadelfia, 2002.
  13. [13] K. Satake and H. Kanamori, “Use of tsunami waveform for earthquake source study,” Natural Hazards Vol.4, pp. 193-208. 1991.
  14. [14] Y. Okada, “Surface deformation due to shear and tensile faults in a half space,” Bulletin of Seismological Society of America, Vol.75, No.4, pp. 1135-1154, 1985.
  15. [15] G. Ekström and M. Nettles, “Global Centroid Moment Tensor Project,” Columbia University,
    Web page: http://www.globalcmt.org/ [accessed Jan. 2013].
  16. [16] F. Imamura, “Review of Tsunami Simulation with a Finite Difference Method. Long Waves Runup Models,” World Scientific Publishing Co. Pte. Ltd. Singapore, 1996.
  17. [17] C. Lawson and R. Hanson, “Solving Least Squares Problems,” Prentice–Hall, 1974.
  18. [18] L. Ocola, Aspectos físicos del maremoto de Pisco del 15 de agosto de 2007 y las inundaciones máximas. Vol.: El terremoto de Pisco del 15 de agosto de 2007 (Mw7.9). Instituto Geofísico del Perú.
  19. [19] C. Ji and Y. Zeng,
    http://earthquake.usgs.gov/earthquakes/eqinthenews/2007/us2007gbcv/finite_fault.php [accessed Dec. 2012]
  20. [20] A. Sladen, H. Tavera, M. Simons, J. Avouac, A. Konca, H. Perfettini, L. Audin, E. Fielding, F. Ortega, and R. Cavagnoud, “Source model of the 2007 Mw8.0 Pisco, Peru earthquake: Implications for seismogenic behavior of subduction megathrusts,” Journal of Geophysical Research, Vol.115, B02405, 2010.
  21. [21] A. Suppasri, F. Imamura, and S. Koshimura, “Effects of the rupture velocity of fault motion,” Coastal Engineering Journal, Vol.52, No.2, pp. 107-132, 2010.
  22. [22] DHN, Informe Post Tsunami Pisco 2007, Dirección de Hidrografía y Navegación, Marina de Guerra del Perú, 2007,
    https://www.dhn.mil.pe/docs/tsunami/Informe_Post_Tsunami_Pisco%202007.pdf [accessed Jan. 2013]
  23. [23] R. Woodman, “Observaciones del tsunami asociado con el Terremoto de Pisco del 15 de Agosto 2007, en El terremoto de Pisco (Peru) del 15 de Agosto de 2007,” Instituto Geofísico del Perú, pp. 351-362.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, IE9,10,11, Opera.

Last updated on Dec. 18, 2018