Review:
Global Warming Projection by an Atmospheric Global Model with 20-km Grid
Shoji Kusunoki*, Jun Yoshimura*, Hiromasa Yoshimura*,
Ryo Mizuta**, Kazuyoshi Oouchi***,
and Akira Noda***
*Meteorological Research Institute, 1-1 Nagamine, Tsukuba, Ibaraki 305-0052, Japan
**Advanced Earth Science and Technology Organization, 1-1 Nagamine, Tsukuba, Ibaraki 305-0052, Japan
***Japan Agency for Marine-Earth Science and Technology, 3173-25 Showa-machi, Kanazawa-ku, Yokohama, Kanagawa 236-0001, Japan
- [1] L. Bengtsson, M. Botzet, and M. Esch, “Will greenhouse gasinduced warming over the next 50 years lead to higher frequency and greater intensity of hurricanes?,” Tellus, 48A, pp. 57-73, 1996.
- [2] K. A. Emanuel, “The dependence of hurricane intensity on climate,” Nature, 326, pp. 483-485, 1987.
- [3] S. Habata, M. Yokokawa, and S. Kitawaki, “The development of the Earth Simulator,” IEICE TRANSACTIONS on Information and systems. E86-D, pp. 1947-1954, 2003.
- [4] S. Habata, K. Umezawa, M. Yokokawa, and S. Kitawaki, “Hardware system of the Earth Simulator,” Parallel Computing, 30, pp. 1287-1313, 2004.
- [5] A. Henderson-Sellers et al., “Tropical cyclones and global climate change: A post-IPCC assessment,” Bull. Amer. Meteor. Soc., 79, pp. 19-38, 1998.
- [6] G. J. Holland, “The maximum potential intensity of tropical cyclones,” J. Atmos. Sci., 54, pp. 2519-2541, 1997.
- [7] Z.-Z. Hu, S. Yang, and R. Wu, “Long-term climate variations in China and global warming signals,” J. Geophys. Res., 108(D19), p. 4614, doi:10.1029/2003JD003651, 2003.
- [8] G. J. Huffman et al., “Global precipitation at one-degree daily resolution from multi-satellite observations,” J. Hydrometeor., 2, pp. 36-50, 2001.
- [9] IPCC (Intergovernmental Panel on Climate Change), “Special Report on Emissions Scenarios. A Special Report of Working Group III of the Intergovernmental Panel on Climate Change,” Cambridge University Press, Cambridge, UK, 2000.
- [10] IPCC (Intergovernmental Panel on Climate Change), “Climate Change 2001: The Scientific Basis. Contribution ofWorking Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change,” Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, p. 881, 2001.
- [11] I. S. Kang et al., “Intercomparison of the climatological variations of Asian summer monsoon precipitation simulated by 10 GCMs,” Clim. Dyn., 19, pp. 383-395, 2002.
- [12] Y. Kawatani and M. Takahashi, “Simulation of the Baiu front in a high resolution AGCM,” J. Meteor. Soc. Japan, 81, pp. 113-126, 2003.
- [13] T. R. Knutson, R. E. Tuleya, and Y. Kurihara, “Simulated increase of hurricane intensities in a CO2-warmed climate,” Science, 279, pp. 1018-1020, 1998.
- [14] T. R. Knutson and R. E. Tuleya, “Impact of CO2-Induced Warming on Simulated Hurricane Intensity and Precipitation: Sensitivity to the Choice of Climate Model and Convective Parameterization,” J. Climate, 17, pp. 3477-3495, 2004.
- [15] C. Kobayashi and M. Sugi, “Impact of horizontal resolution on the simulation of the Asian summer monsoon and tropical cyclones in the JMA global model,” Clim. Dyn., 93, pp. 165-176, 2004.
- [16] S. Kusunoki, M. Sugi, A. Kitoh, C. Kobayashi, and K. Takano, “Atmospheric seasonal predictability experiments by the JMA AGCM,” J. Meteor. Soc. Japan, 79, pp. 1183-1206, 2001.
- [17] S. Kusunoki, J. Yoshimura, H. Yoshimura, A. Noda, K. Oouchi, and R. Mizuta, “Change of Baiu rain band in global warming projection by an atmospheric general circulation model with 20-km grid size,” J. Meteor. Soc. Japan, 84, pp. 581-611, 2006.
- [18] K.-M. Lau, J. H. Kim, and Y. Sud, “Intercomparison of hydrologic processes in AMIP GCMs,” Bull. Amer.Meteor. Soc., 77, pp. 2209-2227, 1996.
- [19] K.-M. Lau and S. Yang, “Seasonal variation, abrupt transition, and intraseasonal variability associated with the Asian summer monsoon in the GLA GCM,” J. Climate,, 9, pp. 965-985, 1996.
- [20] X. Z. Liang, W. C.Wang, and A. N. Samel, “Biases in AMIP model simulations of the east China monsoon system. Clim,” Dyn., 17, pp. 291-304, 2001.
- [21] B. Liebmann, H. H. Hendon, and J. D. Glick, “The relationship between tropical cyclone of the western Pacific and Indian Oceans and the Madden-Julian Oscillation,” J. Meteor. Soc. Japan, 72, pp. 401-411. 1994.
- [22] R. A. Madden and P. R. Julian, “Description of global-scale circulation cells in the tropics with a 40-50 day period,” J. Atmos. Sci., 29, pp. 1109-1123, 1972.
- [23] R. Mizuta, K. Oouchi, H. Yoshimura, A. Noda, K. Katayama, S. Yukimoto, M. Hosaka, S. Kusunoki, H. Kawai, and M. Nakagawa, “20-km-mesh global climate simulations using JMA-GSM model — mean climate states — ,” J. Meteor. Soc. Japan, 84, pp. 165-185, 2006.
- [24] T. Nakazawa, “Madden-Julian Oscillation activity and typhoon landfall on Japan in 2004,” SOLA, Vol.2, pp. 136-139, doi:10.2151/sola.2006-035, 2006.
- [25] K. Ninomiya, and T. Akiyama, “Multi-scale features of Baiu, the summer monsoon over Japan and the East Asia,” J. Meteor. Soc. Japan, 70, pp. 467-495, 1992.
- [26] K. Oouchi, J. Yoshimura, H. Yoshimura, R. Mizuta, S. Kusunoki, and A. Noda, “Tropical cyclone climatology in a global-warming climate as simulated in a 20km-mesh global atmospheric model,” J. Meteor. Soc. Japan, 84, pp. 259-276, 2006.
- [27] R.W. Reynolds and T.M. Smith, “Improved global sea surface temperature analyses using optimum interpolation,” J. Climate, 7, pp. 929-948, 1994.
- [28] A. J. Simmons and J. K. Gibson, “The ERA-40 Project Plan,” ERA-40 Project Report Series No.1, European Centre for Medium-Range Weather Forecasts, March, 2000.
- [29] K. R. Sperber, S. Hameed, G. L. Potter, and J. S. Boyle, “Simulation of the northern summer Monsoon in the ECMWF model: Sensitivity to horizontal resolution,” Mon. Wea. Rev., 122, pp. 2461-2481, 1994.
- [30] M. Sugi, A. Noda, and N. Sato, “Influence of global warming on tropical cyclone climatology: An experiment with the JMA Global Model,” J. Meteor. Soc. Japan, 80, pp. 249-272, 2002.
- [31] K. J. E. Walsh and B. F. Ryan, “Tropical cyclone intensity increase near Australia as a result of climate change,” J. Climate, 13, pp. 3029-3036, 2000.
- [32] K. Yamaguchi and A. Noda, “Global Warming Patterns over the North Pacific: ENSO versus AO,” J. Meteor. Soc. Japan, 84, pp. 221-241, 2006.
- [33] K. Yasunaga, M. Yoshizaki, Y. Wakazuki, C. Muroi, K. Kurihara, A. Hashimoto, S. Kanada, T. Kato, S. Kusunoki, K. Oouchi, H. Yoshimura, R. Mizuta, and A. Noda, “Changes in the Baiu frontal activity in the future climate simulated by super-high-resolution global and cloud-resolving regional climate models,” J. Meteor. Soc., 84, pp. 199-220, 2006.
- [34] H. Yoshimura and T. Matsumura, “A Vertically Conservative two-time-level semi-Lagrangian semi-implicit scheme,” The 2004 Workshop on the Solution of Partial Differential Equations on the Sphere, Yokohama, pp. 20-23, July, 2004.
- [35] J. Yoshimura, M. Sugi, and A. Noda, “Influence of greenhouse warming on tropical cyclone frequency,” J. Meteor. Soc. Japan, 84, pp. 405-428, 2006.
- [36] J. Yoshimura and M. Sugi, “Tropical Cyclone Climatology in a High-resolution AGCM — Impacts of SST Warming and CO2 Increase — ,” SOLA, 1, pp. 133-136, doi: 10.2151/sola.2005-035, 2005.
- [37] M. Yoshizaki et al., “Changes of Baiu (Mei-yu) Frontal Activity in the Global Warming Climate Simulated by a Non-hydrostatic Regional Model,” SOLA, 1, pp. 25-28, 2005.
- [38] S. Yukimoto, A. Noda, A. Kitoh, M. Hosaka, H. Yoshimura, T. Uchiyama, K. Shibata, O. Arakawa, and S. Kusunoki, “Present-day climate and climate sensitivity in theMeteorological Research Institute Coupled GCM version 2.3 (MRI-CGCM2.3),” J. Meteor. Soc. Japan, 84, pp. 333-363, 2006.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.