JDR Vol.3 No.1 pp. 4-14
doi: 10.20965/jdr.2008.p0004


Global Warming Projection by an Atmospheric Global Model with 20-km Grid

Shoji Kusunoki*, Jun Yoshimura*, Hiromasa Yoshimura*,
Ryo Mizuta**, Kazuyoshi Oouchi***,
and Akira Noda***

*Meteorological Research Institute, 1-1 Nagamine, Tsukuba, Ibaraki 305-0052, Japan

**Advanced Earth Science and Technology Organization, 1-1 Nagamine, Tsukuba, Ibaraki 305-0052, Japan

***Japan Agency for Marine-Earth Science and Technology, 3173-25 Showa-machi, Kanazawa-ku, Yokohama, Kanagawa 236-0001, Japan

October 11, 2007
November 29, 2007
February 1, 2008
atmospheric global model, tropical cyclone, Baiu
We projected global warming on the Earth Simulator using a very high horizontal resolution atmospheric global general circulation model with 20-km grids, targeting tropical cyclones (TCs) and the rain band (Baiu) during the East Asian summer monsoon season because these bring typical extreme events and global climate models have not yielded reliable simulations or projections due to insufficient resolutions. Our model reproduces TCs and a Baiu rain band reasonably well under present-day climate conditions. In a warmer climate at the end of this century, the model projects, under A1B scenario of the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES), that the annual mean formation frequency of TCs decreases by about 30% globally but increased in the North Atlantic and TCs with largemaximumsurface winds increase. The Baiu rain band activity tends to intensify and last longer until August, suggesting more damages due to heavy rainfalls in a warmer climate. This is a review paper mainly originated from published articles on tropical cyclone by Oouchi et al. (2006) [26] and on the East Asian summer monsoon by Kusunoki et al. (2006) [17].
Cite this article as:
S. Kusunoki, J. Yoshimura, H. Yoshimura, R. Mizuta, K. Oouchi, and A. Noda, “Global Warming Projection by an Atmospheric Global Model with 20-km Grid,” J. Disaster Res., Vol.3 No.1, pp. 4-14, 2008.
Data files:
  1. [1] L. Bengtsson, M. Botzet, and M. Esch, “Will greenhouse gasinduced warming over the next 50 years lead to higher frequency and greater intensity of hurricanes?,” Tellus, 48A, pp. 57-73, 1996.
  2. [2] K. A. Emanuel, “The dependence of hurricane intensity on climate,” Nature, 326, pp. 483-485, 1987.
  3. [3] S. Habata, M. Yokokawa, and S. Kitawaki, “The development of the Earth Simulator,” IEICE TRANSACTIONS on Information and systems. E86-D, pp. 1947-1954, 2003.
  4. [4] S. Habata, K. Umezawa, M. Yokokawa, and S. Kitawaki, “Hardware system of the Earth Simulator,” Parallel Computing, 30, pp. 1287-1313, 2004.
  5. [5] A. Henderson-Sellers et al., “Tropical cyclones and global climate change: A post-IPCC assessment,” Bull. Amer. Meteor. Soc., 79, pp. 19-38, 1998.
  6. [6] G. J. Holland, “The maximum potential intensity of tropical cyclones,” J. Atmos. Sci., 54, pp. 2519-2541, 1997.
  7. [7] Z.-Z. Hu, S. Yang, and R. Wu, “Long-term climate variations in China and global warming signals,” J. Geophys. Res., 108(D19), p. 4614, doi:10.1029/2003JD003651, 2003.
  8. [8] G. J. Huffman et al., “Global precipitation at one-degree daily resolution from multi-satellite observations,” J. Hydrometeor., 2, pp. 36-50, 2001.
  9. [9] IPCC (Intergovernmental Panel on Climate Change), “Special Report on Emissions Scenarios. A Special Report of Working Group III of the Intergovernmental Panel on Climate Change,” Cambridge University Press, Cambridge, UK, 2000.
  10. [10] IPCC (Intergovernmental Panel on Climate Change), “Climate Change 2001: The Scientific Basis. Contribution ofWorking Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change,” Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, p. 881, 2001.
  11. [11] I. S. Kang et al., “Intercomparison of the climatological variations of Asian summer monsoon precipitation simulated by 10 GCMs,” Clim. Dyn., 19, pp. 383-395, 2002.
  12. [12] Y. Kawatani and M. Takahashi, “Simulation of the Baiu front in a high resolution AGCM,” J. Meteor. Soc. Japan, 81, pp. 113-126, 2003.
  13. [13] T. R. Knutson, R. E. Tuleya, and Y. Kurihara, “Simulated increase of hurricane intensities in a CO2-warmed climate,” Science, 279, pp. 1018-1020, 1998.
  14. [14] T. R. Knutson and R. E. Tuleya, “Impact of CO2-Induced Warming on Simulated Hurricane Intensity and Precipitation: Sensitivity to the Choice of Climate Model and Convective Parameterization,” J. Climate, 17, pp. 3477-3495, 2004.
  15. [15] C. Kobayashi and M. Sugi, “Impact of horizontal resolution on the simulation of the Asian summer monsoon and tropical cyclones in the JMA global model,” Clim. Dyn., 93, pp. 165-176, 2004.
  16. [16] S. Kusunoki, M. Sugi, A. Kitoh, C. Kobayashi, and K. Takano, “Atmospheric seasonal predictability experiments by the JMA AGCM,” J. Meteor. Soc. Japan, 79, pp. 1183-1206, 2001.
  17. [17] S. Kusunoki, J. Yoshimura, H. Yoshimura, A. Noda, K. Oouchi, and R. Mizuta, “Change of Baiu rain band in global warming projection by an atmospheric general circulation model with 20-km grid size,” J. Meteor. Soc. Japan, 84, pp. 581-611, 2006.
  18. [18] K.-M. Lau, J. H. Kim, and Y. Sud, “Intercomparison of hydrologic processes in AMIP GCMs,” Bull. Amer.Meteor. Soc., 77, pp. 2209-2227, 1996.
  19. [19] K.-M. Lau and S. Yang, “Seasonal variation, abrupt transition, and intraseasonal variability associated with the Asian summer monsoon in the GLA GCM,” J. Climate,, 9, pp. 965-985, 1996.
  20. [20] X. Z. Liang, W. C.Wang, and A. N. Samel, “Biases in AMIP model simulations of the east China monsoon system. Clim,” Dyn., 17, pp. 291-304, 2001.
  21. [21] B. Liebmann, H. H. Hendon, and J. D. Glick, “The relationship between tropical cyclone of the western Pacific and Indian Oceans and the Madden-Julian Oscillation,” J. Meteor. Soc. Japan, 72, pp. 401-411. 1994.
  22. [22] R. A. Madden and P. R. Julian, “Description of global-scale circulation cells in the tropics with a 40-50 day period,” J. Atmos. Sci., 29, pp. 1109-1123, 1972.
  23. [23] R. Mizuta, K. Oouchi, H. Yoshimura, A. Noda, K. Katayama, S. Yukimoto, M. Hosaka, S. Kusunoki, H. Kawai, and M. Nakagawa, “20-km-mesh global climate simulations using JMA-GSM model — mean climate states — ,” J. Meteor. Soc. Japan, 84, pp. 165-185, 2006.
  24. [24] T. Nakazawa, “Madden-Julian Oscillation activity and typhoon landfall on Japan in 2004,” SOLA, Vol.2, pp. 136-139, doi:10.2151/sola.2006-035, 2006.
  25. [25] K. Ninomiya, and T. Akiyama, “Multi-scale features of Baiu, the summer monsoon over Japan and the East Asia,” J. Meteor. Soc. Japan, 70, pp. 467-495, 1992.
  26. [26] K. Oouchi, J. Yoshimura, H. Yoshimura, R. Mizuta, S. Kusunoki, and A. Noda, “Tropical cyclone climatology in a global-warming climate as simulated in a 20km-mesh global atmospheric model,” J. Meteor. Soc. Japan, 84, pp. 259-276, 2006.
  27. [27] R.W. Reynolds and T.M. Smith, “Improved global sea surface temperature analyses using optimum interpolation,” J. Climate, 7, pp. 929-948, 1994.
  28. [28] A. J. Simmons and J. K. Gibson, “The ERA-40 Project Plan,” ERA-40 Project Report Series No.1, European Centre for Medium-Range Weather Forecasts, March, 2000.
  29. [29] K. R. Sperber, S. Hameed, G. L. Potter, and J. S. Boyle, “Simulation of the northern summer Monsoon in the ECMWF model: Sensitivity to horizontal resolution,” Mon. Wea. Rev., 122, pp. 2461-2481, 1994.
  30. [30] M. Sugi, A. Noda, and N. Sato, “Influence of global warming on tropical cyclone climatology: An experiment with the JMA Global Model,” J. Meteor. Soc. Japan, 80, pp. 249-272, 2002.
  31. [31] K. J. E. Walsh and B. F. Ryan, “Tropical cyclone intensity increase near Australia as a result of climate change,” J. Climate, 13, pp. 3029-3036, 2000.
  32. [32] K. Yamaguchi and A. Noda, “Global Warming Patterns over the North Pacific: ENSO versus AO,” J. Meteor. Soc. Japan, 84, pp. 221-241, 2006.
  33. [33] K. Yasunaga, M. Yoshizaki, Y. Wakazuki, C. Muroi, K. Kurihara, A. Hashimoto, S. Kanada, T. Kato, S. Kusunoki, K. Oouchi, H. Yoshimura, R. Mizuta, and A. Noda, “Changes in the Baiu frontal activity in the future climate simulated by super-high-resolution global and cloud-resolving regional climate models,” J. Meteor. Soc., 84, pp. 199-220, 2006.
  34. [34] H. Yoshimura and T. Matsumura, “A Vertically Conservative two-time-level semi-Lagrangian semi-implicit scheme,” The 2004 Workshop on the Solution of Partial Differential Equations on the Sphere, Yokohama, pp. 20-23, July, 2004.
  35. [35] J. Yoshimura, M. Sugi, and A. Noda, “Influence of greenhouse warming on tropical cyclone frequency,” J. Meteor. Soc. Japan, 84, pp. 405-428, 2006.
  36. [36] J. Yoshimura and M. Sugi, “Tropical Cyclone Climatology in a High-resolution AGCM — Impacts of SST Warming and CO2 Increase — ,” SOLA, 1, pp. 133-136, doi: 10.2151/sola.2005-035, 2005.
  37. [37] M. Yoshizaki et al., “Changes of Baiu (Mei-yu) Frontal Activity in the Global Warming Climate Simulated by a Non-hydrostatic Regional Model,” SOLA, 1, pp. 25-28, 2005.
  38. [38] S. Yukimoto, A. Noda, A. Kitoh, M. Hosaka, H. Yoshimura, T. Uchiyama, K. Shibata, O. Arakawa, and S. Kusunoki, “Present-day climate and climate sensitivity in theMeteorological Research Institute Coupled GCM version 2.3 (MRI-CGCM2.3),” J. Meteor. Soc. Japan, 84, pp. 333-363, 2006.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jun. 19, 2024