Paper:
Three-Dimensional Microassembly of Cell-Laden Microplates by in situ Gluing with Photocurable Hydrogels
Shotaro Yoshida, Koji Sato, and Shoji Takeuchi
Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- [1] D. Huh, G. A. Hamilton, and D. E. Ingber, “From 3D cell culture to organs-on-chips,” Trends in Cell Biology, Vol.21, No.12, pp. 745-754, 2011.
- [2] R. Langer and J. P. Vacanti, “Tissue engineering,” Science, Vol.260, pp. 920-926, 1993.
- [3] U. A. Gurkan, S. Tasoglu, D. Kavaz, M. C. Demirei, and U. Demirci, “Emerging technologies for assembly of microscale hydrogels,” Advanced Healthcare Materials, Vol.1, No.2, pp. 149-158, 2012.
- [4] J. Yang, M. Yamato, H. Sekine, S. Sekiya, Y. Tsuda, K. Ohashi, T. Shimizu, and T. Okano, “Tissue engineering using laminar cellular assemblies,” Advanced Materials, Vol.21, No.32-22, pp. 3404-3409, 2009.
- [5] A. Tamayol, M. Akbari, N. Annabi, A. Paul, A. Khademhosseini, and D. Juncker, “Fiber-based tissue engineering: progress, challenges, and opportunities,” Biotechnology Advances, Vol.31, No.5, pp. 669-687, 2013.
- [6] H. Onoe, T. Okitsu, A. Itou, M. Kato-Negishi, R. Gojo, D. Kiriya, K. Sato, S. Mirua, S. Iwanaga, K. Kuribayashi-Shigetomi,Y. T. Matsunaga, Y. Shimoyama, and S. Takeuchi, “Metre-long cellladen microfibres exhibit tissue morphologies and functions,” Nature Materials, Vol.12, pp. 584-590, 2013.
- [7] V. Mironov, R. P. Visconti, V. Kasyanov, G. Forquacs, C. J. Drake, and R. R. Markwald, “Organ printing: tissue spheroids as building blocks,” Biomaterials, Vol.30, No.12, 2009.
- [8] E. Fennema, N. Rivron, J. Rouwkema, C. van Blitterswijk, and J. de Boer, “Spheroid culture as a tool for creating 3D complex tissues,” Trends Biotechnol, Vol.31, No.2, 2013.
- [9] H. Onoe and S. Takeuchi, “Microfabricated mobile microplates for handling single adherent cells,” J. of Micromechanics and Microengineering, Vol.18, No.9, 095003, 2008.
- [10] K. Kuribayashi-Shigetomi, H. Onoe, and S. Takeuchi, “Cell Origami: Self-Folding of Three-Dimensional Cell-Laden Microstructures Driven by Cell Traction Force,” PLoS ONE, 7, 12, e51085, 2012.
- [11] K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor three-dimensional photonic crystals,” Nature Materials, Vol.2, pp. 117-121, 2003.
- [12] Y. Zhang, H. Keum, and S. Kim, “Microassembly of MEMS actuators and sensors via micro-masonry,” in Proc. Micro Electro Mechanical Systems, pp. 283-286, 2013.
- [13] F. Arai and T. Fukuda, “A new pick up and release method by heating for micromanipulation,” in Proc. IEEE Micro Electro Mechanical Systems, pp. 383-388, 1997.
- [14] K. Tsuchiya, A. Murakami, G. Fortmann, M. Nakao, and Y. Hatamura, “Micro assembly and micro bonding in Nano Manufacturing World,” in Proc. SPIE Conf. on Microrobotics and Microassembly, Vol.3834, pp. 132-140, 1999.
- [15] J. Cecil, D. Vasquez, and D. Powell, “A review of gripping and manipulation techniques for micro-assembly applications,” Int. J. of Production Research, Vol.43, No.4, pp. 819-828, 2005.
- [16] M. Savia and H. N. Koivo, “Contact Micromanipulation-Survey of Strategies,” IEEE/ASME Trans. on Mechatronics, Vol.14, No.4, 2009.
- [17] J. Aramburu, M. B. Yaffe, C. López-Rodríguez, L. C. Cantley, P. G. Hogan, and A. Rao, “Affinity-driven peptide selection of an NFAT inhibitor more selective than cyclosporin A,” Science, Vol.285, No.5436, pp. 2129-2133, 1999.
- [18] P. Zorlutuna, N. Annabi, G. Camci-Unal, M. Nikkhah, J. M. Cha, J. M. Nichol, A. Manbachi, H. Bae, S. Chen, and A. Khademhosseini, “Microfabricated biomaterials for engineering 3D Tissues,” Advanced Materials, Vol.24, No.14, pp. 1782-1804, 2012.
- [19] A. Lauto, D. Mawad, L. John, and R. Foster, “Adhesive biomaterials for tissue reconstruction,” J. of Chemical Technology and Biotechnology, Vol.83, No.4, pp. 464-472, 2008.
- [20] D. Dendukuri, D. C. Pregibon, J. Collins, T. A. Hatton, and P. S. Doyle, “Continuous-flow lithography for high-throughput microparticle synthesis,” Nature Materials, Vol.5, pp. 365-369, 2006.
- [21] P. Panda, S. Ali, E. Lo, B. G. Chung, T. A. Hatton, A. Khademhosseini, and P. S. Doyle, “Stop-flow lithography to generate cell-laden microgel particles,” Lab on a Chip, Vol.8, pp. 1056-1061, 2008.
- [22] S. Yoshida and S. Takeuchi, “Dissolvable mobile microplates for handling adherent cells,” in Proc. IEEE Miro Electro Mechanical Systems, pp. 959-962, 2013.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.