Paper:
Improved Cytocompatibility of Nanosecond-Pulsed Laser-Treated Commercially Pure Ti Surfaces
Masayoshi Mizutani*1, Ryo Honda*2, Yuta Kurashina*2,
Jun Komotori*3, and Hitoshi Ohmori*4
*1Tohoku University, 6-6-01 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
*2Graduate School, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
*3Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
*4RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- [1] T. Hayakawa, K. Takahashi, M. Yoshinari, H. Okada, H. Yamamoto, M. Sato, and K. Nemoto, “Trabecular bone response to titanium implants provided with a thin carbonate-containing apatite coating applied using molecular precursor method,” Int J Oral Maxillofac Implants, Vol.21, Issue 6, pp. 851-858, 2006.
- [2] B. Setzer, M. Bächle, M. C. Metzger, and R. J. Kohal, “The geneexpression and phenotypic response of hFOB 1.19 osteoblasts to surface-modified titanium and zirconia,” Biomaterials, Vol.30, Issue 6, pp. 979-990, 2009.
- [3] G. Zhao, Z. Schwartz, M. Wieland, F. Rupp, J. Geis-Gerstorfer, D. L. Cochran, and B. D. Boyan, “High surface energy enhances cell response to titanium substrate microstructure,” J Biomed Mater Res A, Vol.74, Issue 1, pp. 49-58, 2005.
- [4] D. Khang, J. Lu, C. Yao, K. M. Haberstroh, and T. J. Webster, “The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium,” Biomaterials, Vol.29, Issue 8, pp. 970-983, 2008.
- [5] J. Lawrence, L. Hao, and H. R. Chew, “On the correlation between Nd:YAG laser-induced wettability characteristics modification and osteoblast cell bioactivity on a titanium alloy,” Surf Coat Technol, Vol.200, Issues 18-19, pp. 5581-5589, 2006.
- [6] L. Xie, X. Liao, G. Yin, Z. Huang, D. Yan, Y. Yao, W. Liu, X. Chen, and J. Gu, “Preparation, characterization, in vitro bioactivity, and osteoblast adhesion of multi-level porous titania layer on titanium by two-step anodization treatment,” J Biomed Mater, Vol.98, Issue 2, pp. 312-320, 2011.
- [7] L. Bren, L. English, J. Fogarty, R. Policoro, A. Zsidi, J. Vance, J. Drelich, N. Istephanous, and K. Rohly, “Hydrophilic/electronacceptor surface properties of metallic biomaterials and their effect on osteoblast cell activity,” J Adhes Sci Technol, 18, 15/16, 1711-1722, 2004.
- [8] Z. Schwartz, R. O. Navarrete, B. D. Boyan, M. Wieland, and D. L. Cochran, “Mechanisms regulating increased production of osteoprotegerin by osteoblasts cultured on microstructured titanium surfaces,” Biomaterials, Vol.30, Issue 20, pp. 3390-3396, 2009.
- [9] R. A. Gittens, T. McLachlan, R. Olivares-Navarrete, Y. Cai, S. Berner, R. Tannenbaum, Z. Schwartz, K. H. Sandhage, and B. D. Boyan, “The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation,” Biomaterials, Vol.32, Issue 13, pp. 3395-3403, 2011.
- [10] T. Miyauchi, M. Yamada, A. Yamamoto, F. Iwasa, T. Suzawa, R. Kamijo, K. Baba, and T. Ogawa, “The enhanced characteristics of osteoblast adhesion to photofunctionalized nanoscale TiO2 layers on biomaterials surfaces,” Biomaterials, Vol.31, Issue 14, pp. 3827-3839, 2010.
- [11] T. Kokubo and H. Takadama, “How useful is SBF in predicting in vivo bone bioactivity?” Biomaterials, Vol.27, Issue 15, pp. 2907-2915, 2006.
- [12] T. M. Li, H. C. Huang, C. M. Su, T, Y. Ho, C. M. Wu, W. C. Chen, Y. C. Fong, and C. H. Tang, “Cistanche deserticola extract increases bone formation in osteoblasts,” J Pharm Pharmacol, Vol.64, Issue 6, pp. 897-907, 2012.
- [13] H. T. Chen, C. H. Hsiao, H. Y. Long, K. C. Chen, J. L. He, C. J. Chung, and C. H. Tang, “Micro-arc oxidation of β-titanium alloy: Structural characterization and osteoblast compatibility,” Surf Coat Technol, Vol.204, Issues 6-7, pp. 1126-1131, 2009.
- [14] C. Mangano, F. Mangano, A. De Rosa, V. Desiderio, R. D’Aquino, F. De Francesco, V. Tirino, G. Papaccio, and A. Piattelli, “The osteoblastic differentiation of dental pulp stem cells and bone formation on different titanium surface textures,” Biomaterials, Vol.31, Issue 13, pp. 3543-3551, 2010.
- [15] S. Nuernberger, C. Albrecht, V. Vecsei, S. Marlovits, H. Redl, and N. Cyran, “The influence of scaffold architecture on chondrocyte distribution and behavior in matrix-associated chondrocyte transplantation grafts,” Biomaterials, Vol.32, Issue 4, pp. 1032-1040, 2011.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.