IJAT Vol.8 No.1 pp. 95-101
doi: 10.20965/ijat.2014.p0095


Three-Dimensional Microassembly of Cell-Laden Microplates by in situ Gluing with Photocurable Hydrogels

Shotaro Yoshida, Koji Sato, and Shoji Takeuchi

Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan

August 2, 2013
November 26, 2013
January 5, 2014
three-dimensional, microassembly, cells, hydrogels, MEMS
This paper describes a method for assembling cellladen microplates into three-dimensional (3D) microstructures by in situ gluing using photocurable hydrogels. We picked up cell-laden microplates with microtweezers, placed the plate perpendicular to one another on a microgroove device, and glued them by local photopolymerization of biocompatible Poly (Ethylene Glycol) (PEG) hydrogels. The advantage of this assembly method is its ability to construct 3D biological microstructures with targeted cells. We demonstrated the assembly of a 3D half-cube microstructure with genetically labeled cell-laden microplates. We believe our method is useful for engineering the positions of cells in 3D configurations for cell-cell interaction analysis and tissue engineering.
Cite this article as:
S. Yoshida, K. Sato, and S. Takeuchi, “Three-Dimensional Microassembly of Cell-Laden Microplates by in situ Gluing with Photocurable Hydrogels,” Int. J. Automation Technol., Vol.8 No.1, pp. 95-101, 2014.
Data files:
  1. [1] D. Huh, G. A. Hamilton, and D. E. Ingber, “From 3D cell culture to organs-on-chips,” Trends in Cell Biology, Vol.21, No.12, pp. 745-754, 2011.
  2. [2] R. Langer and J. P. Vacanti, “Tissue engineering,” Science, Vol.260, pp. 920-926, 1993.
  3. [3] U. A. Gurkan, S. Tasoglu, D. Kavaz, M. C. Demirei, and U. Demirci, “Emerging technologies for assembly of microscale hydrogels,” Advanced Healthcare Materials, Vol.1, No.2, pp. 149-158, 2012.
  4. [4] J. Yang, M. Yamato, H. Sekine, S. Sekiya, Y. Tsuda, K. Ohashi, T. Shimizu, and T. Okano, “Tissue engineering using laminar cellular assemblies,” Advanced Materials, Vol.21, No.32-22, pp. 3404-3409, 2009.
  5. [5] A. Tamayol, M. Akbari, N. Annabi, A. Paul, A. Khademhosseini, and D. Juncker, “Fiber-based tissue engineering: progress, challenges, and opportunities,” Biotechnology Advances, Vol.31, No.5, pp. 669-687, 2013.
  6. [6] H. Onoe, T. Okitsu, A. Itou, M. Kato-Negishi, R. Gojo, D. Kiriya, K. Sato, S. Mirua, S. Iwanaga, K. Kuribayashi-Shigetomi,Y. T. Matsunaga, Y. Shimoyama, and S. Takeuchi, “Metre-long cellladen microfibres exhibit tissue morphologies and functions,” Nature Materials, Vol.12, pp. 584-590, 2013.
  7. [7] V. Mironov, R. P. Visconti, V. Kasyanov, G. Forquacs, C. J. Drake, and R. R. Markwald, “Organ printing: tissue spheroids as building blocks,” Biomaterials, Vol.30, No.12, 2009.
  8. [8] E. Fennema, N. Rivron, J. Rouwkema, C. van Blitterswijk, and J. de Boer, “Spheroid culture as a tool for creating 3D complex tissues,” Trends Biotechnol, Vol.31, No.2, 2013.
  9. [9] H. Onoe and S. Takeuchi, “Microfabricated mobile microplates for handling single adherent cells,” J. of Micromechanics and Microengineering, Vol.18, No.9, 095003, 2008.
  10. [10] K. Kuribayashi-Shigetomi, H. Onoe, and S. Takeuchi, “Cell Origami: Self-Folding of Three-Dimensional Cell-Laden Microstructures Driven by Cell Traction Force,” PLoS ONE, 7, 12, e51085, 2012.
  11. [11] K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi, “Microassembly of semiconductor three-dimensional photonic crystals,” Nature Materials, Vol.2, pp. 117-121, 2003.
  12. [12] Y. Zhang, H. Keum, and S. Kim, “Microassembly of MEMS actuators and sensors via micro-masonry,” in Proc. Micro Electro Mechanical Systems, pp. 283-286, 2013.
  13. [13] F. Arai and T. Fukuda, “A new pick up and release method by heating for micromanipulation,” in Proc. IEEE Micro Electro Mechanical Systems, pp. 383-388, 1997.
  14. [14] K. Tsuchiya, A. Murakami, G. Fortmann, M. Nakao, and Y. Hatamura, “Micro assembly and micro bonding in Nano Manufacturing World,” in Proc. SPIE Conf. on Microrobotics and Microassembly, Vol.3834, pp. 132-140, 1999.
  15. [15] J. Cecil, D. Vasquez, and D. Powell, “A review of gripping and manipulation techniques for micro-assembly applications,” Int. J. of Production Research, Vol.43, No.4, pp. 819-828, 2005.
  16. [16] M. Savia and H. N. Koivo, “Contact Micromanipulation-Survey of Strategies,” IEEE/ASME Trans. on Mechatronics, Vol.14, No.4, 2009.
  17. [17] J. Aramburu, M. B. Yaffe, C. López-Rodríguez, L. C. Cantley, P. G. Hogan, and A. Rao, “Affinity-driven peptide selection of an NFAT inhibitor more selective than cyclosporin A,” Science, Vol.285, No.5436, pp. 2129-2133, 1999.
  18. [18] P. Zorlutuna, N. Annabi, G. Camci-Unal, M. Nikkhah, J. M. Cha, J. M. Nichol, A. Manbachi, H. Bae, S. Chen, and A. Khademhosseini, “Microfabricated biomaterials for engineering 3D Tissues,” Advanced Materials, Vol.24, No.14, pp. 1782-1804, 2012.
  19. [19] A. Lauto, D. Mawad, L. John, and R. Foster, “Adhesive biomaterials for tissue reconstruction,” J. of Chemical Technology and Biotechnology, Vol.83, No.4, pp. 464-472, 2008.
  20. [20] D. Dendukuri, D. C. Pregibon, J. Collins, T. A. Hatton, and P. S. Doyle, “Continuous-flow lithography for high-throughput microparticle synthesis,” Nature Materials, Vol.5, pp. 365-369, 2006.
  21. [21] P. Panda, S. Ali, E. Lo, B. G. Chung, T. A. Hatton, A. Khademhosseini, and P. S. Doyle, “Stop-flow lithography to generate cell-laden microgel particles,” Lab on a Chip, Vol.8, pp. 1056-1061, 2008.
  22. [22] S. Yoshida and S. Takeuchi, “Dissolvable mobile microplates for handling adherent cells,” in Proc. IEEE Miro Electro Mechanical Systems, pp. 959-962, 2013.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jun. 03, 2024