Paper:
Design of Wearable Power Assist Wear for Low Back Support Using Pneumatic Actuators
Xiangpan Li, Toshiro Noritsugu, Masahiro Takaiwa,
and Daisuke Sasaki
Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
- [1] H. Kamioka and T. Honda, “Low Back Pain in Female Caregivers in Nursing Homes, Low Back Pain,” Ali Asghar Norasteh (Ed.), ISBN: 978-953-51-0599-2, InTech, 2012.
- [2] J. L. Pons, R. Ceres, and L. Calderón, “Introduction to Wearable Robotics, in Wearable Robots: Biomechatronic Exoskeletons,” J. L. Pons (Ed.), John Wiley & Sons, Ltd, Chichester, UK., 2008.
- [3] Y. Sankai, “HAL: Hybrid Assistive Limb Based on Cybernics,” Robotics Research, The 13th Int. Symp. ISRR, pp. 25-34, 2010.
- [4] M. Ishii, K. Yamamoto, and K. Hyodo, “Stand-Alone Wearable Power Assist Suit – Development and Availability –,” J. of Robotics and Mechatronics, Vol.17, No.5, pp. 575-583, 2005.
- [5] Y. Muramatsu, H. Kobayashi, Y. Sato, H. Jiaou, T. Hashimoto, and H. Kobayashi, “Quantitative Performance Analysis of Exoskeleton Augmenting Devices – Muscle Suit – for Manual Worker,” Int. J. of Automation Technology, Vol.5, No.4, pp. 559-567, 2011.
- [6] T. Kusaka, T. Tanaka, S. Kaneko, Y. Suzuki, M. Saito, and H. Kajiwara, “Assist Force Control of Smart Suit for Horse Trainers Considering Motion Synchronization,” Int. J. of Automation Technology, Vol.3, No.6, pp. 723-730, 2009.
- [7] K. Naruse, S. Kawai, H. Yokoi, and Y. Kakazu, “Design of Wearable Power-Assist Device for Lower Back Support,” J. of Robotics and Mechatronics, Vol.16, No.5, pp. 489-496, 2004.
- [8] M. Abdoli-E, J. M. Stevenson, S. A. Reid, and T. J. Bryant, “Mathematical and empirical proof of principle for an on-body personal lift augmentation device (PLAD),” J. of Biomechanics, Vol.40, pp. 1694-1700, 2007.
- [9] D. B. Chaffin, G. B. J. Andersson, and B. J. Martin, “Occupational Biomechanics,” 4th Ed., 2006.
- [10] M. Nordin, S. S. Weiner, “Biomechanics of the Lumbar Spine, Basic biomechanics of the musculoskeletal system,” Lippincott Williams & Wilkins, Third Ed., April 4, 2001.
- [11] J. Cholewicki, K. Juluru, A. Radebold, M. M. Panjabi, and S. M. McGill, “Lumbar spine stability can be augmented with an abdominal belt and/or increased intra-abdominal pressure,” European Spine J., Vol.8, No.5, pp. 388-395, 1999.
- [12] L. Gao, T. Noritsugu, M. Takaiwa, and D. Sasaki, “Development of Wearable Power Assist Device Using Curved Pneumatic rubber artificial Muscle,” Proc. of the 6th Int. Conf. on Fluid Power Transmission and Control ICFP 2005, pp. 330-334, 2005.
- [13] T. Noritsugu, D. Sasaki, M. Kameda, A. Fukunaga, and M. Takaiwa, “Wearable Power Assist Device for Standing Up Motion Using Pneumatic Rubber Artificial Muscles,” J. of Robotics and Mechatronics, Vol.19, No.6, pp.619-628, 2007.
- [14] T. Noritsugu, M. Takaiwa, and D. Sasaki, “Development of Power Assist Wear Using Pneumatic Rubber Artificial Muscles,” J. of Robotics and Mechatronics, Vol.21, No.5, pp. 607-613, 2009.
- [15] C.-P. Chou and B. Hannaford, “Static and dynamic characteristics of McKibben pneumatic artificial muscles,” Int. Conf. on Robotics and Automation, Vol.1, pp. 281-286, 1994.
- [16] G. K. Klute, J. M. Czerniecki, and B. Hannaford, “McKibben artificial muscles: pneumatic actuators with biomechanical intelligence,” IEEE/ASME int. conf. on advanced intelligent Mechatronics, Atlanta, GA, Sep. 19-22, 1999.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.