Paper:
Analytical Prediction of Part Dynamics for Machining Stability Analysis
Salih Alan*, Erhan Budak**, and H. Nevzat Özgüven*
*Department of Mechanical Engineering, Middle East Technical University, 06531 Ankara, Turkey
**Faculty of Engineering and Natural Sciences, Sabanci University, Orhanli, Tuzla, 34956 Istanbul, Turkey
- [1] S. A. Tobias, “Machine-Tool Vibration,” Blackie & Son Ltd, 1965.
- [2] J. Tlusty, “Manufacturing Processes and Equipment,” Prentice Hall, 2000.
- [3] S. A. Tobias and W. Fishwick, “Theory of Regenerative Machine Tool Chatter,” The Engineer, Vol.205, pp. 199-203, 1958.
- [4] J. Tlusty and M. Polacek, “The stability of Machine Tools against Self Excited Vibrations,” ASME Int. Research in Production Engineering, Vol.1, pp. 465-474, 1963.
- [5] H. E. Merritt, “Theory of Self-excited Machine-tool Chatter,” J. of Engineering for Industry, Vol.87, pp. 447-454, 1965.
- [6] F. Koenigsberger and J. Tlusty, “Machine Tool Structures,” Vol.1, Pergamon Press, 1970.
- [7] I. Minis and R. Yanushevsky, “A New Theorethical Aproach for the Prediction of Machine Tool Chatter in Milling,” J. of Engineering for Industry, Vol.115, pp. 1-8, 1993.
- [8] E. Budak and Y. Altıntaş, “Analytical Prediction of Chatter Stability in Milling – Part I: General Formulation,” Trans. of the ASME, Vol.120, pp. 22-30, 1998.
- [9] E. Budak and Y. Altıntaş, “Analytical Prediction of Chatter Stability in Milling – Part II: Application of the General Formulation to Common Milling Systems,” Trans. of the ASME, Vol.120, pp. 31-36, 1998.
- [10] T. Schmitz and R. Donaldson, “Predicting High-Speed Machining Dynamics by Substructure Analysis,” Annals of the CIRP, Vol.49, No.1, pp. 303-308, 2000.
- [11] T. Schmitz, M. Davies, and M. Kennedy, “Tool Point Frequency Response Prediction for High-Speed Machining by RCSA,” J. of Manufacturing Science and Engineering, Vol.123, pp. 700-707, 2001.
- [12] A. Ertürk, H. N. Özgüven, and E. Budak, “Analytical Modeling of Spindle–tool Dynamics on Machine Tools Using Timoshenko Beam Model and Receptance Coupling for the Prediction of Tool Point FRF,” Int. J. of Machine Tools & Manufacture, Vol.46, pp. 1901-1912, 2006.
- [13] E. Budak, A. Ertürk, and H. N. Özgüven, “A Modeling Approach for Analysis and Improvement of Spindle-holder-tool Assembly Dynamics,” Annals of the CIRP, Vol.55, pp. 369-372, 2006.
- [14] A. Ertürk, H. N. Özgüven, and E. Budak, “Effect analysis of bearing and interface dynamics on tool point FRF for chatter stability in machine tools by using a new analytical model for spindle – tool assemblies,” Int. J. of Machine Tools & Manufacture, Vol.47, pp. 23-32, 2007.
- [15] U. Bravo, O. Altuzarra, L. N. López de Lacalle, J. A. Sánchez, and F. J. Campa, “Stability Limits ofMilling Considering the Flexibility of the Workpiece and the Machine,” Int. J. of Machine Tools & Manufacture, Vol.45, pp. 1669-1680, 2005.
- [16] V. Thevenot, L. Arnaud, G. Dessein, and G. Cazenave-Larroche, “Influence ofMaterial Removal on the Dynamic Behaviour of Thinwalled Structures in Peripheral Milling,” Machining Science and Technology, Vol.10, pp. 275-287, 2006.
- [17] V. Thevenot, L. Arnaud, G. Dessein, and G. Cazenave-Larroche, “Integration of Dynamic Behaviour Variations in the Stability Lobes Method: 3D Lobes Construction and Application to Thin-walled Structure Milling,” The International Journal of Advanced Manufacturing Technology, Vol.27, pp. 638-644, 2006.
- [18] J. V. Le Lan, A. Marty, and J. F. Debongnie, “Providing Stability Maps for Milling Operations,” Int. J. of Machine Tools & Manufacture, Vol.47, pp. 1493-1496, 2006.
- [19] I. Mañé, V. Gagnol, B. C. Bouzgarrou, and P. Ray, “Stabilitybased Spindle Speed Control During Flexible Workpiece Highspeed Milling,” International Journal of Machine Tools & Manufacture, Vol.48, pp. 184-194, 2007.
- [20] K. Weinert, P. Kersting, T. Surmann, and D. Biermann, “Modeling Regenerative Workpiece Vibrations in Five-axis Milling,” Production Engineering Research and Development, Vol.2, No.3, pp. 255-260, 2008.
- [21] S. Atlar, E. Budak, and H. N. Özgüven, “Modeling Part Dynamics and Chatter Stability in Machining Considering Material Removal,” 1st Int. Conf. on Process Machine Interactions, Hannover, pp. 61-72, 2008.
- [22] H. N. Özgüven, “Structural Modifications Using Frequency Response Functions,” Mechanical Systems and Signal Processing, Vol.4, No.1, pp. 53-63, 1990.
- [23] CutPro, Manufacturing Automation Lab.
(http://www.malinc.com/)
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.