single-rb.php

JRM Vol.37 No.3 pp. 731-741
doi: 10.20965/jrm.2025.p0731
(2025)

Paper:

Mechanical and Geometric Constraints for Robotic Assembly with a Single Manipulator

Satoshi Makita ORCID Icon and Yuya Honda

Fukuoka Institute of Technology
3-30-1 Wajiro-higashi, Higashi-ku, Fukuoka, Fukuoka 811-0295, Japan

Received:
October 4, 2024
Accepted:
March 27, 2025
Published:
June 20, 2025
Keywords:
robotic assembly, manipulation, mechanical analysis, industrial robots
Abstract

This study investigated an assembly strategy that leverages only a single robotic manipulator and an attached parallel gripper. This approach reduces the need for additional fixtures, such as manipulators and fixturing jigs, and minimizes costs and workspace footprint. We discuss the mechanical and geometric conditions required to improve the robustness of objects in the assembly process. The mechanical conditions represent the force equilibrium of multiple objects, and the geometric conditions restrict the movability of the objects. As some of the support jigs used in the experiments were not controlled to firmly fix the assembled objects, the above conditions were essential to guarantee the robustness of the temporarily assembled parts. This paper presents a successful case of automated assembly using a single manipulator, demonstrating the potential of the proposed method.

Handling temporarily assembled objects

Handling temporarily assembled objects

Cite this article as:
S. Makita and Y. Honda, “Mechanical and Geometric Constraints for Robotic Assembly with a Single Manipulator,” J. Robot. Mechatron., Vol.37 No.3, pp. 731-741, 2025.
Data files:
References
  1. [1] R. A. Knepper, T. Layton, J. Romanishin, and D. Rus, “Ikeabot: An autonomous multi-robot coordinated furniture assembly system,” IEEE Int. Conf. on Robotics and Automation, pp. 855-862, 2013. https://doi.org/10.1109/ICRA.2013.6630673
  2. [2] A. Keshvarparast, D. Battini, O. Battaia, and A. Pirayesh, “Collaborative robots in manufacturing and assembly systems: Literature review and future research agenda,” J. of Intelligent Manufacturing, Vol.35, pp. 2065-2118, 2023. https://doi.org/10.1007/s10845-023-02137-w
  3. [3] E. Rimon and A. Blake, “Caging 2D bodies by 1-parameter two-fingered gripping systems,” Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 1458-1464, 1996. https://doi.org/10.1109/ROBOT.1996.506911
  4. [4] S. Makita and W. Wan, “A survey of robotic caging and its applications,” Advanced Robotics, Vol.31, Issues 19-20, pp. 1071-1085, 2017. https://doi.org/10.1080/01691864.2017.1371075
  5. [5] S. Alatartsev, S. Stellmacher, and F. Ortmeier, “Robotic task sequencing problem: A survey,” J. of Intelligent and Robotic Systems: Theory and Applications, Vol.80, pp. 279-298, 2015. https://doi.org/10.1007/s10846-015-0190-6
  6. [6] W. Wan, K. Harada, and K. Nagata, “Assembly sequence planning for motion planning,” Assembly Automation, Vol.38, Issue 2, pp. 195-206, 2018. https://doi.org/10.1108/AA-01-2017-009
  7. [7] T. Murayama, B. Takemura, and F. Oba, “Assembly sequence planning using inductive learning,” J. Robot. Mechatron., Vol.11, No.4, pp. 315-320, 1999. https://doi.org/10.20965/jrm.1999.p0315
  8. [8] C. Li and W. Hou, “Assembly sequence planning based on hierarchical model,” Wireless Communications and Mobile Computing, Vol.2022, No.1, Article No.9461794, 2022. https://doi.org/10.1155/2022/9461794
  9. [9] I. Nishida, H. Sawada, and K. Shirase, “Automated generation of product assembly order based on geometric constraints between parts,” Int. J. Automation Technol., Vol.17, No.2, pp. 167-175, 2023. https://doi.org/10.20965/ijat.2023.p0167
  10. [10] X. Jiang, K.-M. Koo, K. Kikuchi, A. Konno, and M. Uchiyama, “Robotized assembly of a wire harness in a car production line,” Advanced Robotics, Vol.25, Issues 3-4, pp. 473-489, 2011. https://doi.org/10.1163/016918610X551782
  11. [11] T. Yoshikawa, “Manipulability and redundancy control of robotic mechanisms,” Proc. of 1985 IEEE Int. Conf. on Robotics and Automation, Vol.2, pp. 1004-1009, 1985. https://doi.org/10.1109/ROBOT.1985.1087283
  12. [12] T. Yoshikawa, “Manipulability of robotic mechanisms,” Int. J. of Robotics Research, Vol.4, Issue 2, pp. 439-446, 1985. https://doi.org/10.1177/027836498500400201
  13. [13] F. Suárez-Ruiz and Q.-C. Pham, “A framework for fine robotic assembly,” IEEE Int. Conf. on Robotics and Automation, pp. 421-426, 2016. https://doi.org/10.1109/ICRA.2016.7487162
  14. [14] R. Ozawa and K. Tahara, “Grasp and dexterous manipulation of multi-fingered robotic hands: A review from a control view point,” Advanced Robotics, Vol.31, Issues 19-20, pp. 1030-1050, 2017. https://doi.org/10.1080/01691864.2017.1365011
  15. [15] A. M. Okamura, N. Smaby, and M. R. Cutkosky, “An overview of dexterous manipulation,” Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 255-262, 2000. https://doi.org/10.1109/ROBOT.2000.844067
  16. [16] A. Billard and D. Kragic, “Trends and challenges in robot manipulation,” Science, Vol.364, No.6446, Article No.eaat8414, 2019. https://doi.org/10.1126/science.aat8414
  17. [17] M. R. Pedersen, L. Nalpantidis, R. S. Andersen, C. Schou, S. Bøgh, V. Krüger, and O. Madsen, “Robot skills for manufacturing: From concept to industrial deployment,” Robotics and Computer-Integrated Manufacturing, Vol.37, pp. 282-291, 2016. https://doi.org/10.1016/j.rcim.2015.04.002
  18. [18] Y. Wang, K. Harada, and W. Wan, “Motion planning through demonstration to deal with complex motions in assembly process,” 2019 IEEE-RAS 19th Int. Conf. on Humanoid Robots (Humanoids), pp. 544-550, 2019. https://doi.org/10.1109/Humanoids43949.2019.9035043
  19. [19] Z. Zhu and H. Hu, “Robot learning from demonstration in robotic assembly: A survey,” Robotics, Vol.7, Issue 2, Article No.17, 2018. https://doi.org/10.3390/robotics7020017
  20. [20] H. Park, J. Park, D. H. Lee, J. H. Park, M. H. Baeg, and J. H. Bae, “Compliance-based robotic peg-in-hole assembly strategy without force feedback,” IEEE Trans. on Industrial Electronics, Vol.64, Issue 8, pp. 6299-6309, 2017. https://doi.org/10.1109/TIE.2017.2682002
  21. [21] J. D. Lane, “Evaluation of a remote center compliance device,” Assembly Automation, Vol.1, Issue 1, pp. 36-46, 1980. https://doi.org/10.1108/eb004135
  22. [22] D. E. Whitney, “Quasi-static assembly of compliantly supported rigid parts,” J. of Dynamic Systems, Measurement, and Control, Vol.104, Issue 1, pp. 65-77, 1982. https://doi.org/10.1115/1.3149634
  23. [23] S. Lee, “Development of a new variable remote center compliance (VRCC) with modified elastomer shear pad (ESP) for robot assembly,” IEEE Trans. on Automation Science and Engineering, Vol.2, Issue 2, pp. 193-197, 2005. https://doi.org/10.1109/TASE.2005.844437
  24. [24] D. I. Park, H. Kim, C. Park, T. Choi, H. Do, B. Kim, and J. Park, “Automatic assembly method with the passive compliant device,” 2017 11th Asian Control Conf. (ASCC), pp. 347-348, 2017. https://doi.org/10.1109/ASCC.2017.8287193
  25. [25] S. Choi, D. Kim, Y. Kim, Y. Kang, J. Yoon, and D. Yun, “A novel compliance compensator capable of measuring six-axis force/torque and displacement for a robotic assembly,” IEEE/ASME Trans. on Mechatronics, Vol.29, Issue 1, pp. 29-40, 2024. https://doi.org/10.1109/TMECH.2023.3294510
  26. [26] J. Takahashi, T. Fukukawa, and T. Fukuda, “Passive alignment principle for robotic assembly between a ring and a shaft with extremely narrow clearance,” IEEE/ASME Trans. on Mechatronics, Vol.21, Issue 1, pp. 196-204, 2016. https://doi.org/10.1109/TMECH.2015.2448639
  27. [27] D. Sanchez, W. Wan, and K. Harada, “Four-arm collaboration: Two dual-arm robots work together to manipulate tethered tools,” IEEE/ASME Trans. on Mechatronics, Vol.27, Issue 5, pp. 3286-3296, 2022. https://doi.org/10.1109/TMECH.2021.3106644
  28. [28] Z. Hu, W. Wan, and K. Harada, “Designing a mechanical tool for robots with two-finger parallel grippers,” IEEE Robotics and Automation Letters, Vol.4, Issue 3, pp. 2981-2988, 2019. https://doi.org/10.1109/LRA.2019.2924129
  29. [29] J. Shintake, V. Cacucciolo, D. Floreano, and H. Shea, “Soft robotic grippers,” Advanced Materials, Vol.30, Issue 29, Article No.1707035, 2018. https://doi.org/10.1002/adma.201707035
  30. [30] Y. Yokokohji, Y. Kawai, M. Shibata, Y. Aiyama, S. Kotosaka, W. Uemura, A. Noda, H. Dobashi, T. Sakaguchi, and K. Yokoi, “Assembly challenge: A robot competition of the industrial robotics category, world robot summit—Summary of the pre-competition in 2018,” Advanced Robotics, Vol.33, Issue 17, pp. 876-899, 2019. https://doi.org/10.1080/01691864.2019.1663609
  31. [31] K. Nie, F. von Drigalski, J. C. Triyonoputro, C. Nakashima, Y. Shibata, Y. Konishi, Y. Ijiri, T. Yoshioka, Y. Domae, T. Ueshiba, R. Takase, X. Zhang, D. Petit, I. G. Ramirez-Alpizar, W. Wan, and K. Harada, “Team O2AS’ approach for the task-board task of the world robot challenge 2018,” Advanced Robotics, Vol.34, Issues 7-8, pp. 477-498, 2020. https://doi.org/10.1080/01691864.2020.1738270
  32. [32] S. Tajima, S. Wakamatsu, T. Abe, M. Tennomi, K. Morita, H. Ubata, A. Okamura, Y. Hirai, K. Morino, Y. Suzuki, T. Tsuji, K. Yamazaki, and T. Watanabe, “Robust bin-picking system using tactile sensor,” Advanced Robotics, Vol.34, Issues 7-8, pp. 439-453, 2020. https://doi.org/10.1080/01691864.2019.1702897
  33. [33] M. Fujita, Y. Domae, A. Noda, G. A. G. Ricardez, T. Nagatani, A. Zeng, S. Song, A. Rodriguez, A. Causo, I. M. Chen, and T. Ogasawara, “What are the important technologies for bin picking? Technology analysis of robots in competitions based on a set of performance metrics,” Advanced Robotics, Vol.34, Issues 7-8, pp. 560-574, 2020. https://doi.org/10.1080/01691864.2019.1698463
  34. [34] N. Sidki, “Autonomous pick and place for mechanical assembly WRS 2020 assembly challenge,” J. Robot. Mechatron., Vol.35, No.1, pp. 43-50, 2023. https://doi.org/10.20965/jrm.2023.p0043
  35. [35] C. Sloth, A. Kramberger, and I. Iturrate, “Towards easy setup of robotic assembly tasks,” Advanced Robotics, Vol.34, Issues 7-8, pp. 499-513, 2020. https://doi.org/10.1080/01691864.2019.1704869
  36. [36] C. Schlette, A. G. Buch, F. Hagelskjær, I. Iturrate, D. Kraft, A. Kramberger, A. P. Lindvig, S. Mathiesen, H. G. Petersen, M. H. Rasmussen, T. R. Savarimuthu, C. Sloth, L. C. Sørensen, and T. N. Thulesen, “Towards robot cell matrices for agile production—SDU robotics’ assembly cell at the WRC 2018,” Advanced Robotics, Vol.34, Issues 7-8, pp. 422-438, 2020. https://doi.org/10.1080/01691864.2019.1686422
  37. [37] L. Xu, F. N. Heravi, M. G. Lahoud, G. Marchello, M. D’Imperio, S. H. J. Abidi, M. Farajtabar, M. Martini, S. Cocuzza, M. Scaccia, and F. Cannella, “Development of a flexible assembly system for the world robot summit 2020 assembly challenge,” J. Robot. Mechatron., Vol.35, No.1, pp. 51-64, 2023. https://doi.org/10.20965/jrm.2023.p0051
  38. [38] K. Harada and M. Kaneko, “Kinematics and internal force in grasping multiple objects,” Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Vol.1, pp. 298-303, 1998. https://doi.org/10.1109/IROS.1998.724635
  39. [39] T. Yoshikawa, T. Watanabe, and M. Daito, “Optimization of power grasps for multiple objects,” Proc. of IEEE Int. Conf. on Robotics and Automation, Vol.2, pp. 1786-1791, 2001. https://doi.org/10.1109/ROBOT.2001.932868
  40. [40] A. Shenoy, T. Chen, and Y. Sun, “Multi-object grasping—Efficient robotic picking and transferring policy for batch picking,” 2022 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 2741-2747, 2022. https://doi.org/10.1109/IROS47612.2022.9981799
  41. [41] Y. Li, B. Liu, Y. Geng, P. Li, Y. Yang, Y. Zhu, T. Liu, and S. Huang, “Grasp multiple objects with one hand,” IEEE Robotics and Automation Letters, Vol.9, Issue 5, pp. 4027-4034, 2024. https://doi.org/10.1109/LRA.2024.3374190
  42. [42] W. C. Agboh, K. Ichnowski, J. Goldberg, and M. R. Dogar, “Multi-object grasping in the plane,” A. Billard, T. Asfour, and O. Khatib (Eds.), “Robotics Research,” pp. 222-238, Springer, 2023. https://doi.org/10.1007/978-3-031-25555-7_15
  43. [43] T. Yamada and H. Yamamoto, “Static grasp stability analysis of multiple spatial objects,” J. of Control Science and Engineering, Vol.3, pp. 118-139, 2015. https://doi.org/10.17265/2328-2231/2015.03.002
  44. [44] S. Makita and K. Makihara, “Homogeneous quantitative measure of caging grasps with both geometrical and mechanical constraints,” Int. Conf. on Control, Automation and Systems, pp. 311-316, 2019. https://doi.org/10.23919/ICCAS47443.2019.8971548
  45. [45] T. Omata and K. Nagata, “Rigid body analysis of the indeterminate grasp force in power grasps,” IEEE Trans. on Robotics and Automation, Vol.16, Issue 1, pp. 46-54, 2000. https://doi.org/10.1109/70.833187
  46. [46] J. Su, H. Qiao, C. Liu, Y. Song, and A. Yang, “Grasping objects: The relationship between the cage and the form-closure grasp,” IEEE Robotics and Automation Magazine, Vol.24, Issue 3, pp. 84-96, 2017. https://doi.org/10.1109/MRA.2016.2615332
  47. [47] T. Makapunyo, T. Phoka, P. Pipattanasomporn, N. Niparnan, and A. Sudsang, “Measurement framework of partial cage quality based on probabilistic motion planning,” Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 1574-1579, 2013. https://doi.org/10.1109/ICRA.2013.6630780
  48. [48] M. C. Welle, A. Varava, J. Mahler, K. Goldberg, D. Kragic, and F. T. Pokorny, “Partial caging: A clearance-based definition, datasets, and deep learning,” Autonomous Robots, Vol.45, pp. 647-664, 2021. https://doi.org/10.1007/s10514-021-09969-6
  49. [49] Y. Jiang, C. Zheng, M. Lim, and A. Saxena, “Learning to place new objects,” Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 3088-3095, 2012. https://doi.org/10.1109/ICRA.2012.6224581
  50. [50] J. Mahler, F. T. Pokorny, Z. Mccarthy, A. F. van der Stappen, and K. Goldberg, “Energy-bounded caging: Formal definition and 2-D energy lower bound algorithm based on weighted alpha shapes,” IEEE Robotics and Automation Letters, Vol.1, Issue 1, pp. 508-515, 2016. https://doi.org/10.1109/LRA.2016.2519145
  51. [51] A. Shirizly, E. D. Rimon, and W. Wan, “Contact space computation of two-finger gravity based caging grasps security measure,” IEEE Robotics and Automation Letters, Vol.6, Issue 2, pp. 572-579, 2020. https://doi.org/10.1109/LRA.2020.3047773
  52. [52] A. Bicchi, “On the closure properties of robotic grasping,” Int. J. of Robotics Research, Vol.14, Issue 4, pp. 319-334, 1995. https://doi.org/10.1177/027836499501400402
  53. [53] E. Rimon and J. Burdick, “The Mechanics of Robot Grasping,” Cambridge University Press, 2019. https://doi.org/10.1017/9781108552011
  54. [54] Q.-Y. Zhou, J. Park, and V. Koltun, “Open3D: A modern library for 3D data processing,” arXiv:1801.09847, 2018. https://doi.org/10.48550/arXiv.1801.09847
  55. [55] G. Bradski, “The OpenCV Library,” Dr. Dobb’s J. of Software Tools, Vol.25, No.11, pp. 120,122-125, 2000.
  56. [56] Z. Wang and V. Kumar, “Object closure and manipulation by multiple cooperating mobile robots,” Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 394-399, 2002. https://doi.org/10.1109/ROBOT.2002.1013392
  57. [57] N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. on Systems, Man, and Cybernetics, Vol.9, Issue 1, pp. 62-66, 1979. https://doi.org/10.1109/TSMC.1979.4310076
  58. [58] A. Komadina, M. Martinić, S. Groš, and Z. Mihajlović, “Comparing threshold selection methods for network anomaly detection,” IEEE Access, Vol.12, pp. 124943-124973, 2024. https://doi.org/10.1109/ACCESS.2024.3452168

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Jun. 20, 2025