Development Report:
Restaurant Service Robots Development in Thailand and Their Real Environment Evaluation
Akkharaphong Eksiri and Tetsuya Kimura
Nagaoka University of Technology
1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
![](https://www.fujipress.jp/main/wp-content/themes/Fujipress/JRM/abst-image/00270001/11.jpg)
- [1] VDMA, “World Robotics 2012 Service Robots,” International Federation of Robotics, August 2012.
- [2] “Panasonic to Unveil Innovative Communication Assistance Robots,” Int. Home Care & Rehabilitation Exhibition, Vol.38, September 2011.
- [3] H.-M. Gross, H. Boehme, C. Schroeter, S. Mueller, A. Koenig, E. Einhorn, C. Martin, M. Merten, and A. Bley, “TOOMAS: Interactive Shopping Guide Robots in Everyday Use -- Final Implementation and Experiences from Long-term Field Trials,” Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and System, pp. 2005-2012, 2009.
- [4] T. Wisspeintner, T. v. d. Zant, L. Iocchi, and S. Schiffer, “RoboCup@Home: Scientific Competition and Benchmarking for Domestic Service Robots,” Vol.10, No.3, pp. 392-426, 2009.
- [5] L. Iocchi, J. R.-d. Solar, and T. V. d. Zant, “Domestic Service Robots in the Real World,” J. of Intelligent & Robotics Systems, Vol.66, No.1-2, pp. 183-186, April 2012.
- [6] T. Sonoura, S. Tokura, T. Tasaki, F. Ozaki, and N. Matsuhira, “Reflective Collision Avoidance for Mobile Service Robot in Person Coexistence Environment,” J. of Robotics and Mechatronics, Vol.23, No.6, 2011.
- [7] M. Miitsuma and H. Hashimoto, “Observation of Human Activities Based on Spatial Memory in Intelligent Space,” J. of Robotics and Mechatronics, Vol.21, No.4, 2009.
- [8] G. Pahl, W. Beitz, J. Feldhusen, and K. Grote, “Engineering Design: A Systematic Approach,” Springer, 3 edition, 2007.
- [9] “International Standard ISO/FDIS 13482: Robots and robotic devices -- Safety requirements for personal care robots,” ISO, 2013.
- [10] K. Forsberg and H. Mooz, “System Engineering for Faster, Cheaper, Better,” Technical report, Center for Systems Management, 255 West Julian Street, Suite 100 San Jose, California, USA 95110, 1998.
- [11] J. R. Galbraith, “Matrix organization designs How to combine functional and project forms,” Business Horizons, Vol.14, No.1, pp. 29-40, February 1971.
- [12] T. Taira and N. Yamasaki, “Functionally Distributed Control Architecture for Autonomous Mobile Robots,” J. of Robotics and Mechatronics, Vol.16, No.2, pp. 217-224, 2004.
- [13] K. Okada, A. Fuyuno, T. Morishita, T. Ogura, Y. Ohkubo, Y. Kino, M. Inaba, and H. Inoue, “Device Distributed Approach to Expandable Robot System Using Intelligent Device with Super-Microprocessor,” J. of Robotics and Mechatronics, Vol.16, No.2, pp. 208-216, 2004.
- [14] J. Brooke, “SUS: a “quick and dirty” usability scale,” In P. W. Jordan, B. Thomas, B. A. Weerdmeester, A. L. McClelland (Eds.), Usability Evaluation in Industry, Taylor and Francis, London, 1996.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.