Paper:
Experimental Comparison of Two Ceiling Hanging Mobile Robots Through Real Prototypes Development
Rui Fukui*, Hiroshi Morishita**, and Tomomasa Sato***
*Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
**HMI Corp., 35-2 Oyama, Matsudo-Shi, Chiba 271-0093, Japan
***The University of Tokyo Future Center Initiative, 227-6 Wakashiba, Kashiwa-shi, Chiba 277-0871, Japan
- [1] E.M. Abdel-Rahman, A. H. Nayfeh, and Z. N.Masoud, “Dynamics and control of cranes: A review,” J. of Vibration and Control, Vol.9, No.7, pp. 863-908, 2003.
- [2] W. Singhose et al., “Use of cranes in education and international collaborations,” J. of Robotics and Mechatronics, Vol.23, No.5, pp. 881-892, 2011.
- [3] T. Hashimoto, T. Ono, N. Kamiya, and H. Kobayashi, “Development of rail trajectory measurement device for inspection of crane rail,” Int. J. of Automation Technology, Vol.6, No.1, pp. 22-28, 2012.
- [4] T. Sato et al., “Construction of ceiling adsorbed mobile robots platform utilizing permanent magnet inductive traction method,” in Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 552-558, 2004.
- [5] R. Fukui et al., “Hangbot: A ceiling mobile robot with robust locomotion under a large payload (key mechanisms integration and performance experiments),” in Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 4601-4607, 2011.
- [6] V. Scheinman, “Robotworld: A multiple robot vision guided assembly system,” in Proc. of the 4th Int. Symposium on Robotics Research, 1987.
- [7] S. Hirose et al., “Machine that can walk and climb on floors, walls and ceilings,” in Proc. of Fifth Int. Conf. on Advanced Robotics, pp. 753-758, 1991.
- [8] R. L. Tummala et al., “Climbing the walls [distributed robotics],” IEEE Robotics & Automation Magazine, Vol.9, No.4, pp. 10-19, 2002.
- [9] T. Miyake, H. Ishihara, and T. Tomino, “Vacuum-based wet adhesion system for wall climbing robots – lubricating action and seal action by the liquid –,” in Proc. of IEEE Int. Conf. on Robotics and Biomimetics, pp. 1824-1829, 2009.
- [10] Urakami Research & Development Co. Ltd., “Looper type cleaning robot,” JP Patent, p2007-307541, May 2006.
- [11] J. Liu, Z. Tong, J. Fu, D.Wang, Q. Su, and J. Zou, “A gecko inspired fluid driven climbing robot,” in Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 783-788, 2011.
- [12] J. Eckerle et al., “Electroadhesion,” US Patent, uS20080089002 A1, Jun. 2006.
- [13] K. Taguchi and A. Ishizaki, “Development of a wall moving minirobot using adhesive method,” J. of the Robotics Society of Japan, Vol.14, No.1, pp. 150-153, 1996.
- [14] M. Murphy and M. Sitti, “Waalbot: An agile small-scale wallclimbing robot utilizing dry elastomer adhesives,” IEEE/ASME Tran. on Mechatronics, Vol.12, No.3, pp. 330-338, 2007.
- [15] H. Tsukagoshi et al., “Gel-type sticky mobile inspector to traverse on the rugged wall and ceiling,” in Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 1591-1592, 2009.
- [16] T. Seo and M. Sitti, “Under-actuated tank-like climbing robot with various transitioning capabilities,” in Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 777-782, 2011.
- [17] S. Kim et al., “SpinybotII: climbing hard walls with compliant microspines,” in Proc. of 12th Int. Conf. on Advanced Robotics, pp. 601-606, 2005.
- [18] S. Kim et al., “Smooth vertical surface climbing with directional adhesion,” IEEE Trans. on Robotics, Vol.24, No.1, pp. 65-74, 2008.
- [19] N. Sugimoto, T. Sasaki, T. Saito, and M. S. H. Nagata, “Function and safety of a freely-movable ceiling suspension system,” in Proc. of the 16th Annual Conf. of the Robotics Society of Japan, ser. 1L19, 2002.
- [20] K. Tsuru and S. Hirose, “Development of wall-climbing robot of magnetic adsorption type used of principle of omni-directional mobile robot “V max”,” in Proc. of JSME Robotics and Mechatronics Conf., 1A1-D20, 2008.
- [21] G. Lee et al., “Combot: Compliant climbing robotic platform with transitioning capability and payload capacity,” in Proc. of Int. Conf. on Mechatronics and Automation, pp. 2737-2742, 2012.
- [22] K. Tsuru and K. Yoneda, “Window cleaning robot with magnetic synchronous drive,” J. of Robotics Society of Japan, Vol.25, No.5, pp. 738-744, 2007.
- [23] M. Menon and H. Asasda, “Actuation and position estimation of a passive mobile end effector from across a thin wall for heavy-duty aircraft manufacturing,” in Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 985-991, 2009.
- [24] J. C. Grieco et al., “A six-legged climbing robot for high payloads,” in Proc. of IEEE Int. Conf. on Control Applications, pp. 446-450, 1998.
- [25] K. Inoue et al., “Omni-directional gait of limb mechanism robot hanging from grid-like structure,” in Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 1732-1737, 2006.
- [26] Z. Lu et al., “Transition motion from ladder climbing to brachiation for multi-locomotion robot,” in Proc. of Int. Conf. on Mechatronics and Automation, pp. 1916-1921, 2009.
- [27] G. Stepan et al., “Acroboter: a ceiling based crawling, hoisting and swinging service robot platform,” in Beyond Gray Droids: Domestic Robot Design for the 21st Century Workshop at Human Computer Interaction, 2009.
- [28] R. Fukui et al., “Development of a manipulation component for a container transferring robot in living space (design and evaluation of a high compliant manipulation mechanism),” in Proc. of 11th Int. Symposium on Experimental Robotics, 2008.
- [29] R. Fukui et al., “Design of distributed end-effectors for cagingspecialized manipulator (design concept and development of finger component),” in Proc. of 13th Int. Symposium on Experimental Robotics, 2012.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.