Paper:
Intuitive Operability Evaluation of Robotic Surgery Using Brain Activity Measurements to Clarify Immersive Reality
Satoshi Miura*, Yo Kobayashi**, Kazuya Kawamura**,
Masatoshi Seki*, Yasutaka Nakashima*, Takehiko Noguchi***,
Masahiro Kasuya*, Yuki Yokoo*, and Masakatsu G. Fujie**
*Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan
**The Faculty of Science and Engineering, Waseda University, Japan
***Graduate School of Creative Science and Engineering, Waseda University, Japan
- [1] T. Osa, C. Staub, and A. Knoll, “Framework of automatic robotic surgery system using visual servoing,” in Proc. 2010 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Taipei, Taiwan, 2010.
- [2] J. Leven, D. Burschka, R. Knmar, M. Choti, C. Hasser, and R. H. Taylor, “Da Vinci Canvas: a telerobotic surgical system with integrated, robot-assisted, laparoscopic ultrasound capability,” Medical Image Computing and Computer-Assisted Intervention (MICCAI), Vol.3749, pp. 811-818, 2005.
- [3] G. H. Ballantyne, “Robotic surgery, telerobotic surgery, telepresence, and telementoring – review of early clinical results,” Surg Endosc, Vol.16, pp. 1389-1402, 2002.
- [4] S. Tachi, H. Arai, and T. Maeda, “Development of an anthropomorphic tele-existence slave robot,” in Proc. Int. Conf. on Advanced Mechatronics, Ibaraki, Japan, pp. 385-390, 1989.
- [5] I. Suh, M. Mukherjee, D. Oleynikov, and K-C. Siu, “Training program for fundamental surgical skill in robotic laparoscopic surgery,” Int. J. Med. Robotics Computer Assist. Surg., Vol.7, pp. 327-333, 2011.
- [6] S. Taya, G. Maehara, and H. Kojima, “Hemodynamic changes in response to the stimulated visual quadrants: a study with 24-channel near-infrared spectroscopy,” Jpn. J. Psychonomic Sci., 2009.
- [7] G. Maehara, S. Taya, and H. Kojima, “Changes in hemoglobin concentration in the lateral occipital regions during shape recognition: a near-infrared spectroscopy study,” J. of Biomedical Optics, Vol.12, No.6, 062109, 2007.
- [8] E. Watanabe et al., “Non-invasive assessment o language dominance with near-infrared spectroscopic mapping,” Neurosci. Lett., Vol.256, pp. 49-52, 1998.
- [9] J. Lee et al., “Origins of Spatial Working Memory Deficits in Schizophrenia: An Event-related fMRI and Near-infrared Spectroscopy Study,” PLoS ONE, Vol.3, e1760, 2008.
- [10] M. Munetaka et al., “Dynamic Cortical Activity during Spasms in Three Patients with West Syndrome: A Multichannel Near-infrared Spectroscopic Topography Study,” Epilepsia, Vol.45, pp. 1248-1257, 2004.
- [11] T. Tsujii et al., “Effects of sedative and non-sedative H1 antagonists on cognitive tasks: behavioral and near-infrared spectroscopy (NIRS) examinations,” Psychoparmacology, Vol.194, pp. 83-91, 2007.
- [12] Y. Otsuka et al., “Neural activation to upright and inverted faces in infants measured by near infrared spectroscopy,” NeuroImage, Vol.34, pp. 399-406, 2007.
- [13] A.-C. Ehlis et al., “Multi-channel near-infrared spectroscopy detects specific inferior-frontal activation during incongruent Stroop trials,” Biological Psychology, Vol.69, pp. 315-331, 2005.
- [14] A. Maravita and A. Iriki, “Tools for the body,” Trends Cogn. Sci., Vol.8, No.2, pp. 79-86, 2004.
- [15] C. Nabeshima, Y. Kuniyoshi, and M. Lungarella, “Adaptive Body Scheme for Robotic Tool-Use,” Advanced Robotics, Vol.20, No.10, pp. 1105-1126, 2006.
- [16] K. Harada et al., “Micro Manipulator and Forceps Naviation for Endoscopic Fetal Surgery,” J. of Mechatoronics, 2006.
- [17] K. Tadano et al., “Development of a Pneumatic Surgical Manupulator IBIS IV,” J. of Robotics and Mechatronics, 2010.
- [18] K. Kishi et al., “Dual-Armed Surgical Master-Slave Manipulator System with MR Compatiblity,” J. of Robotics and Mechatronics, 2005.
- [19] T. Yonemura et al., “Comparison of Pose Correspondence Methods of Master-Slave Manipulator for Neurosurgical Robotics Systems,” J. of Robotics and Mechatronics, 2011.
- [20] Y. Sekiguchi et al., “Development of a Tool Manipulator Driven by a Flexible Shaft for Single-Port Endoscopic Surgery,” J. of Robotics and Mechatronics, 2011.
- [21] I. Scott. MacKenzie, “Fitts’ Law as a Research and Design Tool in Human-Computer Interaction,” HUMAN-COMPUTER INTERACTION, 1992, Vol.7, pp. 91-139, 1992.
- [22] S. K. Card and T. P. Moran, “The Keystroke-Level Model for User Performance Time with Interactive Systems,” Communication of the ACM, Vol.23, No.7, pp. 396-410, Jul. 1980.
- [23] T. Yoshikawa, “Manipulability of Robotic Mechanisms,” The Int. J. of Robotics Research 1985.
- [24] A. C. B. Garcia, C. Maciel, and F. B. Pint, “A Quality Inspection Method to Evaluate E-Government Sites,” Electric Government 2005, Lecture Notes in Computer Science, Vol.3591, 198-209, 2005.
- [25] M. Winder and A. herts, “A new heuristic method for the flow shop sequencing problem,” European J. of Operational Research, Vol.41, pp. 186-193, 1988.
- [26] M. H. Blackmon, P. G. Polson, M. Kitajima, and C. Lewis, “Cognitive Walkthrough for the WEB,” in Proc. of the SIGCHI conf. on Human factors in computing systems: Changing our world, changing ourselves (CHI2002), Minneapolis, Minnesota, USA, April 20-25, 2002.
- [27] W. Wimmer, “The ECODESIGN Checklist Method: A Redesign Tool for Environment Product Improvements,” in proc. of Environmentally Conscious Design and Inverse Manufacturing, pp. 685-688, Feb. 1-3, 1999.
- [28] J. S. Michaelson, E. Halpern, and D. B. Kopans, “Breast Cancer: Computer Simulation Method for Estimating Optimal Intervals for Screening,” Radop;pgu 1999, 551-560, 1999.
- [29] J. Ott, “Computer-simulation methods in human linkage analysis,” Proc. of the National Academy of Science of the Untied States of America (PNAS), Vol.86, pp. 4157-4178, Jun. 1989.
- [30] D. J. Kasik and H. G. George, “Toward Automatic Generation of Novice User Test Scripts,” Proc. of the SIGCHI conf. on Human factors in computing systems: common ground (CHI 96), Vancouver, BC Canada, pp. 244-251, 1996.
- [31] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “a Method for Automatic Evaluation of Machine Transaction,” in Proc. of the 40th Annual Meeting of the Association for Computational Linguistics (ACL), Philadelphia, pp. 311-318, Jul. 2002
- [32] N. Kuboyama et al., “The Effect of Maximal Finger Tapping on Cerebral Activation,” J. of physiological Anthropology and Applied human Science, Vol.23, pp. 105-110, 2004.
- [33] T. Suto et al, “Multichannel Near-infrared Spectroscopy in Depression and Schizophrenia: Cognitive Brain Activation Study,” Biol Psychiatry, Vol.55, pp. 501-511, 2004.
- [34] T. Ohtani et al., “Hemodynamic response of eye movement desensitization and reprocessing in posttraumatic stress disorder,” Neuroscience Research, Vol.65, pp. 375-383, 2009.
- [35] C. E. Colby and M. E. Golberg, “Space and attention in parietal cortex,” Annu. Rev. Neurosci., Vol.12, pp. 319-349, 1999.
- [36] R. A. Anderson, “Visual and eye movement functions of the posterior parietal cortex,” Annu. Rev. Neurosci., Vol.12, pp. 377-403, 1989.
- [37] J. C. Culham and N. G. Kanwisher, “Neuroimaging of cognitive functions in human parietal cortex,” Current Opinion in Neurobiology, Vol.11, pp. 157-163, 2001.
- [38] H. Head and G. Holmes, “Sensory disturbances from cerebral lesions,” Brain, Vol.34, pp. 102-245, 1911.
- [39] A. N. Fader and P. F. Escobar, “Laparoendoscopic single-site surgery (LESS) in gynecologic oncology: technique and initial report,” Gynecologic Oncology, Vol.114, 2009.
- [40] M. Miyazaki, M. Hiroshima, and D. Nozaki, “The Cutaneous Rabbit Hopping out of the Body,” J. Neurosci., Vol.30, No.5, pp. 1856-1860, 2010.
- [41] H. Imamizu, S. Miyauchi, T. Tamada, Y. Sasaki, R. Takino, B. Pz, T. Yoshioka, and M. Kawato, “Human Cerebellar Activity Reflecting an Acquired Internal Model of a New Tool,” Nature, Vol.403, pp. 192-195, 2000.
- [42] D. M. Clower and D. Boussaound, “Selective Use of Perceptual Recalibration Versus Visuomotor Skill Acquisition,” J. Neurophysiol., Vol.84, pp. 2703-2708, 2000.
- [43] S. Miura, Y. Kobayashi, M. Seki, T. Noguchi, M. Kasuya, Y. Yokoo, and M. G. Fujie, “Intuitive Operability Evaluation of Robotic Surgery using Brain Activity Measurement to Identify the Hand-Eye Coordination,” in proc. of the2012 IEEE Int. Conf. on Robotics and Automation (ICRA’12), 2012.
- [44] V. J. Santos and F. J. Valero-Cuevas, “Reported Anatomical Variability Naturally Leads to Multimodal Distributions of Denavit-Hartenberg Parameters for the Human Thumb,” IEEE T. Bio-med. Eng., Vol.53, No.2, pp. 155-163, 2006.
- [45] J. Paillard, “The Use of Tools by Human and Non-human Primates,” Oxford University Press, New York, 1993.
- [46] S. R. A. Fisher, “The Design of Experiments,” 1935.
- [47] R. W. Human, J. Herman, and P. Purdy, “Cerebral location of international 10-20 system electrode placement,” Electroen. Clin. Neuro., Vol.66, pp. 376-382, 1987.
- [48] M. Hoffman, H. G. Marques, A. H. Arieta, H. Sumioka, M. Lungarella, and R. Pefeifer, “Body Scheme in Robotics: a review,” IEEE Trans. Autonomous Mental Development, Vol.2, No.4, pp. 304-324, 2010.
- [49] E. Cassirer, “Philosophie der symbolischen Formen,” pp. 1923-1929, 1923.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.
Copyright© 2013 by Fuji Technology Press Ltd. and Japan Society of Mechanical Engineers. All right reserved.