Paper:
Improving the Maneuverability of Power Assist Valves by Considering the Characteristics of Biarticular Muscles
Motoki Nakano, Takayuki Tanaka, and Shun’ichi Kaneko
System Sensing Control Laboratory, Graduate School of Information Science and Technology, Hokkaido University, Kita 14, Nishi 9, Kita-ku, Sapporo 060-0814, Japan
- [1] Hogan et al., “Impedance Control (An approach to manipulation),” IEEE Trans. J. Dynamic Systems, Measurement, and Control, Vol.107, No.1, pp. 1-24, 1985.
- [2] G. J. van Ingen Schenau et al, “The unique action of bi-articular muscles in complex movement,” J. of Anatomy, Vol.155, pp. 1-5, 1987.
- [3] R. Jacobs et al., “Control of an external force in leg extensions in humans,” J. of Physiology, Vol.457, pp. 611-626, 1992.
- [4] Y. Kuniyoshi et al., “Musculoskeletal Robot with Anti-Gravity Muscle and Bi-Articular Muscle,” Robothics mechatronics 2005, Robomec2005, 2P1-N-046, 2005.
- [5] T. Tsuji, “Motion control and musculo-skeletal model of a lancelet robot,” J. of the robotics society of japan, Vol.28, No.6, pp. 695-698, 2010.
- [6] J. Mclntyre et al., “Servo Hypotheses for the Biological Control of Movement,” J. Motor Behavior, Vol.25, pp. 193-202, 1993.
- [7] M. Kumamoto et al., “Control properties induced by the existence of anatagonistic pairs of bi-articular muscles – Mechanical engineering model analyses,” Human Movement Science, Vol.13, No.5, pp. 611-634, 1994.
- [8] T. Oshima et al., “Output force distribution charasteristics of limbs by coordination of mono-articular and bi-articular muscles,” The Japan Society for Precision Engineering, Vol.73, No.4, pp. 492-497, 2007.
- [9] T. Yoshikawa, “Dynamic Manipulability of Robot Manipulators,” J. of Robotic Systems, Vol.2, No.1, pp. 113-124, 1985.
- [10] K. Yoshida et al., “Evaluation of Robot Arm Equipped with Biarticular Muscles by Extended Manipulability Measures,” Proc. of the Japan Industry Applications Society Conf., Vol.2, No.2, pp. 341-346, 2008.
- [11] K. Yoshida et al., “Experimental Study on Static and Dynamic Properties of Robot Arm Equipped with Bi-articular Driving Mechanism,” The institute of electrical engineers of japan, IIC-08-113, 2008.
- [12] T. Oshima et al., “Modeling of human musculoskeletal system and possibility of the application to rehabilitation,” The Japan Society for Precision Engineering, Vol.73, No.3, pp. 309-312, 2007.
- [13] T. Tajima et al., “Effect of Improvement of Steering System of Vehicle based on Muscular Cooperated Control Model,” Institute of Biomechanical Control workshop, No.1, 2011.
- [14] M. Nakano et al., “Improving Maneuverability of Power-Assisted Valve for Fire Engines Based on Prediction of Valve Opening Times,” J. of Robotics and Mechatronics, Vol.21, No.5, pp. 628-634, 2009.
- [15] M. Kumamoto et al., “Nikansetsukin (Biarticula muscles),” Igaku-Shoin, pp. 81-87, 2008.
- [16] A. V. Hill, “The heat of shortening and the dynamic constants of muscle,” Proc. of the Royal Society of London, Series B, Biological Sciences, Vol.126, No.843, pp. 136-195, Oct. 10, 1938.
- [17] T. Flash, “The Control of Hand Equilibrium Trajectories in Multi-Joint Arm Movement,” Biological Cybernetics, Vol.57, pp. 257-254, 1987.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.
Copyright© 2013 by Fuji Technology Press Ltd. and Japan Society of Mechanical Engineers. All right reserved.