Paper:
Hopping by a Monopedal Robot with a Biarticular Muscle by Compliance Control – An Application of an Electromagnetic Linear Actuator –
Yoshihiro Nakata*, Atsuhiro Ide*, Yutaka Nakamura*,
Katsuhiro Hirata**, and Hiroshi Ishiguro*
*Department of Systems Innovation, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
**Department of Adaptive Machine Systems, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- [1] N. Hogan, “Adaptive Control of Mechanical Impedance by Coactivation of Antagonist Muscles,” IEEE Trans. on Automatic Control, Vol.29, No.8, pp. 681-690, 1984.
- [2] T. Oshima, K. Toriumi, T. Fujikawa, and N. Momose, “Effects of the Lower Leg Bi-Articular Muscle in Jumping,” J. of Robotics and Mechatronics, Vol.16, No.6, pp. 643-648. 2004.
- [3] G. J. van Ingen Schenau, “From rotation to translation: Constraints on multi-joint movements and the unique action of bi-articular muscles,” Human Movement Science,, Vol.8, No.4, pp. 301-337, 1989.
- [4] F. Iida, J. Rummel, and A. Seyfarth, “Bipedal walking and running with spring-like biarticular muscles,” J. of Biomechanics, Vol.41, No.3, pp. 656-667, 2008.
- [5] K. Hosoda, Y. Sakaguchi, H. Takayama and T. Takuma, “Pneumatic-driven jumping robot with anthropomorphic muscular skeleton structure,” Autonomous Robots, Vol.28, No.3, pp. 307-316. 2009.
- [6] M. Wisse and R. Q. van der Linde, “Delft Pneumatic Bipeds,” Springer Tracts in Advanced Robotics, Vol.34, Springer-Verlag, ch.3, 2007.
- [7] B. Vanderborght, “Dynamic Stabilisation of the Biped Lucy Powered by Actuators with Controllable Stiffness,” Springer Tracts in Advanced Robotics, Vol.63, Springer-Verlag, ch.2, 2010.
- [8] K. Iwata, K. Suzumori, and S. Wakimoto, “Development of Contraction and Extension Artificial Muscles with Different Braid Angles and Their Application to Stiffness Changeable Bending Rubber Mechanism by Their Combination,” J. of Robotics and Mechatronics, Vol.23, No.4, pp. 582-588, 2011.
- [9] T. Takuma and K. Hosoda, “Terrain Negotiation of a Compliant Biped Robot Driven by Antagonistic Artificial Muscles,” J. of Robotics and Mechatronics, Vol.19, No.4, pp. 423-428, 2007.
- [10] A. Sugahara, Y. Nakamura, I. Fukuyori, Y. Matsumoto, and H. Ishiguro, “Generating Circular Motion of a Human-Like Robotic Arm Using Attractor Selection Model,” J. of Robotics and Mechatronics, Vol.22, No.3, pp. 315-321, 2010.
- [11] R. Niiyama and Y. Kuniyoshi, “Design principle based on maximum output force profile for a musculoskeletal robot,” Industrial Robot: An Int. J., Vol.37, No.3, pp. 250-255, 2010.
- [12] G. A. Pratt, “Legged robots at MIT: what���s new since Raibert?,” IEEE Robotics & Automation Magazine, Vol.7, No.3, pp. 15-19, 2000.
- [13] G. Lu, S. Kawamura, M. Uemura, Y. Matsumoto, and H. Ishiguro, “Proposal of an Energy Saving Control Method for SCARA Robots,” J. of Robotics and Mechatronics, Vol.24, No.1, pp. 115-122, 2012.
- [14] I. Mizuuchi, Y. Nakanishi, Y. Sodeyama, Y. Namiki, T. Nishino, N. Muramatsu, J. Urata, K. Hongo, T. Yoshikai, and M. Inaba, “An Advanced Musculoskeletal Humanoid Kojiro,” in Proc. of the 2007 IEEE-RAS Int. Conf. on Humanoid Robots, pp.294-299, 2007.
- [15] Y. Kimura, O. Sehoon, and Y. Hori, “Novel robot arm with biarticular driving system using a planetary gear system and disturbance observer,” 11th IEEE Int. Workshop on Advanced Motion Control, pp. 296-301, 2010.
- [16] Y. Nakata, H. Ishiguro, and K. Hirata, “Dynamic Analysis Method for Electromagnetic Artificial Muscle Actuator under PID Control,” IEEJ Trans. on Industry Applications, Vol.131, No.2, pp. 166-170, 2011.
- [17] C. Y. Scovil and J. L. Ronsky, “Sensitivity of a Hill-based muscle model to perturbations,” J. of Biomechanics, Vol.39, No.11, pp. 2055-2063, 2006.
- [18] I. C. Wright, R. R. Neptune, A. J. van den Bogert, and B. M. Nigg, “Passive regulation of impact forces in heel-toe running,” Clinical Biomechanics, Vol.13, No.7, pp. 521-531, 1998.
- [19] S. L. Delp, “Surgery simulation: A computer-graphics system to analyze and design musculoskeletal reconstructions of the lower limb,” Stanford University, Ph.D. Thesis, ch.4, 1990.
- [20] Y. Nakata, T. Fujimoto, H. Ishiguro, and K. Hirata, “Design and optimization of a novel small-sized linear vernier motor without mover magnets for artificial muscle applications,” IEEE Int. Magnetics Conf. 2012, BG-01, 2012.
- [21] L. F. Shampine and M. W. Reichelt, “The MATLAB ODE Suite,” Natick, MA: The MathWorks, 1997.
- [22] K. G. M. Gerritsen, A. J. van den Bogert, and B. M. Nigg, “Direct dynamics simulation of the impact phase in heel-toe running,” J. of Biomechanics, Vol.28, No.6, pp. 661-668, 1995.
- [23] A. J. van den Bogert, H. C. Schamhardt, and A. Crowe, “Simulation of quadrupedal locomotion using a rigid body model,” J. of Biomechanics, Vol.22, No.1, pp. 33-41. 1989.
- [24] R. J. Full and D. E. Koditschek, “Templates and anchors: neuromechanical hypotheses of legged locomotion on land,” J. of Experimental Biology, Vol.202, pp. 3325-3332, 1999.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.
Copyright© 2013 by Fuji Technology Press Ltd. and Japan Society of Mechanical Engineers. All right reserved.