Paper:
A Blood Flow Measurement Robotic System: Ultrasound Visual Servoing Algorithms Under Pulsation and Displacement of an Artery
Keiichiro Ito, Tomofumi Asayama, Hiroyasu Iwata,
and Shigeki Sugano
Department of Creative Science and Engineering, School of Modern Mechanical Engineering, Waseda University, 17 Kikui-cho, Shinjuku-ku, Tokyo 162-0044, Japan
- [1] S. Iwai, “Japan advanced trauma evaluation and care guideline,” The Japanese association for the surgery of trauma, pp. 43-114, 2008.
- [2] W. S. Hoff, M. Holevar, and K. K. Nagy, “Practice management guidelines for the evaluation of blunt abdominal trauma: the East practice management guidelines work group,” J. of Trauma, pp. 602-615, 2002.
- [3] J. K. Willmann, “Multidetector CT: Detection of Active Hemorrhage in Patients with Blunt Abdominal Trauma,” American Roentgen Ray Society, pp. 437-444, 2002.
- [4] H. Scheffel, “Acute gastrointestinal bleeding: detection of source and etiology with multi-detector-row CT,” European Radiology, Vol.17, No.6, pp. 1555-1565, 2007.
- [5] J. Duchesne, “CT-Angiography for the Detection of a Lower Gastrointestinal Bleeding Source,” The American Surgeon, Vol.71, No.5, pp. 392-397, 2005.
- [6] C. J. Laing, “Acute Gastrointestinal Bleeding: Emerging Role of Multidetector CT Angiography and Review of Current Imaging Techniques,” Radio Graphics, pp. 1055-1070, 2007.
- [7] T. Jaeckle, “Evaluation of acute mesenteric ischemia: accuracy of biphasic mesenteric multi-detector CT angiography,” Abdominal Imaging, Vol.34, No.3, pp. 345-357, 2009.
- [8] F. H. Miller, “An initial experience: Using helical CT imaging to detect obscure gastrointestinal bleeding,” Clinical Imaging, Vol.28, Issue 4, pp. 245-251, 2004.
- [9] S. E. Mirvis, “Detection of bleeding in patients with major pelvic fractures: value of contrast-enhanced CT,” American J. of Roentgenology, Vol.166, pp. 131-135.
- [10] S. Vaezy, “Hemorrhage control using high intensity focused ultrasound,” Hyperthermia, pp. 1-9, 2007.
- [11] K. Ito et al., “Wearable Echography Robot for Trauma Patient,” Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 4794-4799, 2010.
- [12] K. Ito et al., “Development of Adaptable RT Echo-Device Detecting Bleeding Source: BASIS-1,” Society of System Integration, pp. 1153-1154, 2010.
- [13] R. Chan, “A Variational Energy Approach for Estimating Vascular Structure and Deformation B-mode Ultrasound Imagery,” Proc. of Int. Conf. on Image Processing, Vol.1, pp. 160-163, 2000.
- [14] A. Takemura, “Segmentation of Ultrasonic Images by Using Locally Adaptive Filter and Wavelet Analysis – Detection of Superficial Peripheral Vein by a High-Frequency Ultrasonic Equipment –,” J. of the institute of electronics, information and communication engineers, pp. 1452-1460, 2003.
- [15] H. K. Chang, “An Automatic Doppler Angle And Flow Velocity Measurement Method,” IEEE Ultrasonic Symposium, pp. 1579-1582, 1998.
- [16] K. Ito et al., “Blood Flow Measurement Algorithms to Detect Bleeding Source Noninvasively,” Proc. of Annual Int. IEEE Engineering in Medicine and Biology Society Conf., pp. 7437-7440, 2011.
- [17] K. Ito et al., “Measurement Algorithms of Cross-section Area and Blood Speed for Noninvasive Blood Flow Measurement System,” Proc. of IEEE Int. Conf. on Robotics and Biomimetics, pp. 263-268, 2011.
- [18] R. W. Gill, “Measurement of Blood Flow by Ultrasound: Accuracy and Sources of Error,” Ultrasound in Med. and Biol., No.4, pp. 625-641, 1985.
- [19] M. Fujii, “Noncontact Measurement of Internal Temperature Distribution using Ultrasonic Computed Tomography: The 2nd Report: Numerical Simulation and Experimental Measurement,” Institute of Advanced Material Study, pp. 131-139, 1994.
- [20] K. Hayashi et al., “Biomechanical Engineering: A First Course,” Japan Society of Mechanical Engineers, pp. 70-89, 1999.
- [21] M. Sugawara and N. Maeda, “Hemorheology and Blood Flow,” Japanese Society for Medical and Biological Engineering, pp. 68-103, 2010.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.
Copyright© 2012 by Fuji Technology Press Ltd. and Japan Society of Mechanical Engineers. All right reserved.