Paper:
Trajectory Control Based on Discrete Full-Range Dynamics
Nandan Maheshwari, Keith Gunura, and Fumiya Iida
Bio-Inspired Robotics Lab., Institute of Robotics and Intelligent Systems, Swiss Federal Institute of Technology Zurich, Leonhardstrasse 27, CH-8092 Zurich, Switzerland
- [1] T. McGeer, “Passive Dynamic Walking,” The Int. J. of Robotics Research, Vol.9, No.2, pp. 62-82, 1990.
- [2] S. Collins, A. Ruina, R. Tedrake, and M. Wisse, “Efficient bipedal robots based on passive dynamic walkers,” Science, Magazine, Vol.307, pp. 1082-1085, 2005.
- [3] A. D. Kuo, “Choosing Your Steps Carefully Trade-Offs Between Economy and Versatility in Dynamic Walking Bipedal Robots,” IEEE Robotics and Automation Magazine, 1070-9932/07, pp. 18-29, 2007.
- [4] M. van Wisse and J. Frankenhuyzen, “Design and construction of mike: A 2D autonomous biped based on passive dynamic walking,” Proc. of the Second Int. Symposium on Adaptive Motion of Animals and Machines, Kyoto, Japan, March 2003.
- [5] S. Collins, M. Wisse, and A. Ruina, “A 3-D passive dynamic walking robot with two legs and knees,” The Int. J. of Robotics Research, Vol.20, No.7, pp. 607-615, 2001.
- [6] K. Trifonov and S. Hashimoto, “Design and Development of a Knee Mechanism for a Passive-Dynamic Walker,” J. of Advanced Mechanical Design, Systems, and Manufacturing, Vol.3, No.1, pp. 76-84, 2009.
- [7] R. Blickhan, “The spring-mass model for running and hopping,” J. Biomechanics, Vol.22, pp. 1217-1227, 1989.
- [8] R. M. Alexander, “Three Uses for Springs in Legged Locomotion,” The Int. J. of Robotics Research, Vol.9, No.2, pp. 53-61, 1990.
- [9] T. A. McMahon, C. Secchi, and C. Fantuzzi, “The Mechanics of Running: How Does Stiffness Couple with Speed,” J. Biomechanics, Vol.23, Suppl. 1, pp. 65-78, 1990.
- [10] E. Todorov, “Review: Optimality principles in sensorimotor control,” Nature Neuroscience, Vol.7, No.9, pp. 907-915, 2004.
- [11] I. Fantoni and R. Lozano, “Non-linear Control for Underactuated Mechanical Systems,” Springer Press, 2002. ISBN: 1-85233-423-1
- [12] S. Stramigiori and G. C. Cheng, “Compensation of position errors in passivity based teleoperation over packet switched communication networks,” Proc. of the 17th World Congress, The Int. Federation of Automatic Control, pp. 15648-15653, 1990.
- [13] R. van Ham, B. Vanderborght, M. van Damme, B. Verrelst, and D. Lefeber, “MACCEPA, the mechanically adjustable complianceand controllable equilibrium position actuator: Design and implementation in a biped robot,” Robotics and Autonomous Systems, Vol.55, pp. 761-768, 2007.
- [14] J. W. Hurst, J. E. Chestnutt, and A. A. Rizzi, “An Actuator with Physically Variable Stiffness for Highly Dynamic Legged Locomotion,” Proc. IEEE Int. Conf. on Robotics and Automation, 2004.
- [15] T. Matsuda and S. Murata, “Stiffness Distribution Control Locomotion of Closed Link Robot with Mechanical Softness,” Proc. IEEE Int. Conf. on Robotics and Automation, 2006.
- [16] A. G. Pratt and M. M. Williamson, “Series Elastic Actuators,” IEEE, pp. 399-406, 1995. ISBN: 0-08186-7108
- [17] B. Bigge and I. R. Harvey, “Programmable springs: Developing actuators with programmable compliance for autonomous robots,” Robotics and Autonomous Systems, Vol.55, No.9, pp. 728-734, 2007.
- [18] S. K. Byeong, J. P. Jung, and B. S. Jae, “A Serial-Type Dual Actuator Unit With Planetary Gear Train: Basic Design and Applications,” IEEE/ASME Trans. on Mechatronics, Vol.15, 2007.
- [19] A. Hirohiko and T. Susumu, “Position Control of a Manipulator with Passive Joints Using Dynamic Coupling,” IEEE Trans. on Robotics and Automation, Vol.7, 1991.
- [20] M. Vukobratovic and D. Stokic, “Is Dynamic Control Needed in Robotic Systems, and, if So, to What Extent?,” The Int. J. of Robotics Research, Vol.2, No.2, 1983.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.
Copyright© 2012 by Fuji Technology Press Ltd. and Japan Society of Mechanical Engineers. All right reserved.