Paper:
A Neural Adaptive Controller in Flapping Flight
Bo Cheng and Xinyan Deng
School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907-2088, USA
- [1] T. S. Collett and M. F. Land, “Visual control of flight behaviour in the hoverfly Syritta pipiens L,” J. of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, Vol.99, pp. 1-66, 1975.
- [2] S. N. Fry, R. Sayaman, and M. H. Dickinson, “The aerodynamics of free-flight maneuvers in Drosophila,” Science, Vol.300, pp. 495-498, 2003.
- [3] S. N. Fry, R. Sayaman, and M. H. Dickinson, “The aerodynamics of hovering flight in Drosophila,” J. of Experimental Biology, Vol.208, pp. 2303-2318, 2005.
- [4] G. K. Taylor and A. L. R. Thomas, “Dynamic flight stability in the desert locust Schistocerca gregaria,” J. of Experimental Biology, Vol.206, pp. 2803-2829, 2003.
- [5] J. A. Bender and M. H. Dickinson, “Comparison of visual and haltere-mediated feedback in the control of body saccades in Drosophila melanogaster,” J. of Experimental Biology, Vol.209, pp. 4597-4606, 2006.
- [6] M. H. Dickinson, “The initiation and control of rapid flight maneuvers in fruit flies,” Integrative and Comparative Biology, Vol.45, pp. 274-281, 2005.
- [7] R. Dudley, “The biomechanics of insect flight,” Princeton University Press, 2000.
- [8] M. H. Dickinson, F. O. Lehmann, and S. P. Sane, “Wing rotation and the aerodynamic basis of insect flight,” Science, Vol.284, pp. 1954-1960, 1999.
- [9] S. P. Sane and M. H. Dickinson, “The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight,” J. of Experimental Biology, Vol.205, pp. 1087-1096, 2002.
- [10] X. Y. Deng, L. Schenato, and S. S. Sastry, “Flapping flight for biomimetic robotic insects: Part II – Flight control design,” IEEE Trans. on Robotics, Vol.22, pp. 789-803, 2006.
- [11] X. Y. Deng, L. Schenato, W. C. Wu, and S. S. Sastry, “Flapping flight for biomimetic robotic insects: Part I – System modeling,” IEEE Trans. on Robotics, Vol.22, pp. 776-788, 2006.
- [12] W. B. Dickson, A. D. Straw, C. Poelma, and M. H. Dickinson, “An Integrative Model of Insect Flight Control,” AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2006.
- [13] B. Cheng and X. Deng, “Mathematical Modeling of Near-hover Insect Flight Dynamics,” ASME DSCC Dynamic Systems and Control Conf., Cambridge, Massachusetts, 2010.
- [14] B. Cheng and X. Deng, “Translational and Rotational Damping of Flapping Flight and Its Dynamics and Stability at Hovering,” IEEE, Trans. on Robotics, Vol.27, 2011.
- [15] B. Cheng and X. Deng, “Near-Hover Dynamics and Attitude Stabilization of an Insect Model,” in American Control Conf., Baltimore 2010.
- [16] B. Cheng, X. Deng, and T. L. Hedrick, “TheMechanics and Control of Pitching Manoeuvres in a Freely Flying Hawkmoth (Manduca Sexta),” J. of Experiment Biology, Vol.214, pp. 4092-4106, 2011.
- [17] A. J. Bergou, L. Ristroph, J. Guckenheimer, I. Cohen, and Z. J. Wang, “Fruit Flies Modulate Passive Wing Pitching to Generate In-Flight Turns,” Physical Review Letters, Vol.104, p. 148101, 2010.
- [18] M. Sun and J. K. Wang, “Flight stabilization control of a hovering model insect,” J. of Experimental Biology, Vol.210, pp. 2714-2722, 2007.
- [19] F. L. Lewis, S. Jagannathan, and A. Yesildirek, “Neural network control of robot manipulators and nonlinear systems,” Philadelphia: Taylor & Francis, 1999.
- [20] S. Haykin, “Neural Networks: A Comprehensive Foundation,” Macmillan College Publishing Company, 1994.
- [21] L. Schenato, X. Deng,W. C.Wu, and S. Sastry, “Virtual insect flight simulator (VIFS): a software testbed for insect flight,” Proc. of the IEEE Int. Conf. on Robotics and Automation, Vol.4, pp. 3885-3892, 2001.
- [22] R. M. Murray, Z. Li, and S. S. Sastry, “A Mathematical Introduction to Robotic Manipulation,” CRC, 1994.
- [23] S. P. Sane and M. H. Dickinson, “The control of flight force by a flapping wing: lift and drag production,” J. of Experimental Biology, Vol.204, pp. 2607-2626, 2001.
- [24] G. K. Taylor, “Mechanics and aerodynamics of insect flight control,” Biological Reviews, Vol.76, pp. 449-471, 2001.
- [25] S. Mao and X. Yan, “Dynamic flight stability of a hovering bumblebee,” J. of Experimental Biology, Vol.208, pp. 447-459, 2005.
- [26] X. Deng, L. Schenato, and S. Sastry, “Model Identification and Attitude Control for aMicromechanical Flying Insect Including Thorax and Sensor Models” Proc. of the IEEE Int. Conf. on Robotics & Automation, Taipei, Taiwan, pp. 1152-1157, 2003.
- [27] X. Deng, L. Schenato, and S. Sastry, “Model Identification and Attitude Control Scheme for a Micromechanical Flying Insect,” Seventh Int. Conf. on Control, Automation, Robotics And Vision (ICARCV ’02), Singapore, pp. 1007-1012, 2002.
- [28] R. Dudley and C. P. Ellington, “Mechanics of Forward Flight in Bumblebees: I. Kinematics and Morphology,” J. of Experimental Biology Vol.148, pp. 19-52, 1990.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.
Copyright© 2012 by Fuji Technology Press Ltd. and Japan Society of Mechanical Engineers. All right reserved.