Paper:
Drip Adjuster: Use of an LED Display to Manually Adjust Intravenous Fluid Infusion Rate
Takeshi Ando*,**, Noriyoshi Tanaka*,***, Kenji Yamada*,
and Yuko Ohno*
*Robotics and Design for Innovative Healthcare, Graduate School of Medicine, Osaka University, 1-7 Yamada-oka, Suita, Osaka 565-0871, Japan
**Graduate School of Creative Science and Engineering, Faculty of Science and Engineering, Waseda University, 59-309, 3-4-1 Ohkubo, Shinjuku, Tokyo 169-8555, Japan
***The Nursing Department, Tokai University Hospital, Isehara, Kanagawa, Japan
- [1] L. Portoni et al., “User-oriented views in health care information systems,” IEEE Trans. Biomed. Eng., Vol.49, No.12, pp. 1387-1398, Dec. 2002.
- [2] J. R. Slagle et al., “Monitor: an expert system that validates and interprets time-dependent partial data based on a cystic fibrosis home monitoring program,” IEEE Trans. Biomed. Eng., Vol.36, No.5, pp. 552-558, 1989.
- [3] M. D. Schwartz and D. Morton, “The Emerging Field of Clinical Engineering and Its Accomplishments,” IEEE Trans. Biomed. Eng., Vol.31, No.12, pp. 743-748, 1984.
- [4] J. H. Carrington et al., “Physical Arrangements at the Bedside in Support of Automated Systems for Patient Care,” IEEE Trans. Biomed. Eng., Vol.18, No.2, pp. 149-154, 1971.
- [5] G. J. Kost, “Preventing Medical Errors in Point-of-Care Testing,” Arch. Pathol. Lab. Med., Vol.125, No.10, pp. 1307-1315, 2001.
- [6] D. Simmons et al., “Tubing Misconnections: Normalization of Deviance,” Nutr. Clin. Pract., Vol.26, pp. 286-293, 2011.
- [7] R. Flin and R. Patey, “Improving patient safety through training in non-technical skills,” BMJ, Vol.339, b3595, Sep., 2009.
- [8] R. Patey, R. Flin, B. H. Cuthbertson, L. MacDonald, K. Mearns, J. Cleland, and D. Williams, “Patient safety: helping medical students understand error in healthcare,” Qual Saf Health Care, Vol.16, No.4, pp. 256-259, 2007.
- [9] J. Garbutt, D. R. Brownstein, E. J. Klein, A. Waterman, M. J. Krauss, E. K. Marcuse, E. Hazel, W. C. Dunagan, V. Fraser, and T. H. Gallagher, “Reporting and Disclosing Medical Errors: Pediatricians��� Attitudes and Behaviors,” Arch Pediatr Adolesc Med, Vol.161, No.2, pp. 161-179, 2007.
- [10] J.-H. Youna, H. Alia, H. Sharifb, and B. Chhetria, “RFID-based information system for preventing medical errors,” Mobile and Ubiquitous Systems: 6th Annual Int. Networking & Services, MobiQuitous, pp. 1-6, 2009.
- [11] L. Kohn, J. Corrigan, and M. Donaldson, “To Err Is Human: Building a Safer Health System,” Committee on Quality of Health Care in America, Institute of Medicine, 2000.
- [12] D. Morrow, R. North, and C. D. Wickens, “Reducing and Mitigating Human Error in Medicine,” Reviews of Human Factors and Ergonomics, pp. 254-296, 2005.
- [13] J. Gladstone, “Drug administration errors: a study into the factors underlying the occurrence and reporting of drug errors in a district general hospital,” J Adv Nurs, Vol.22, pp. 628-637, 1995.
- [14] P. Y. Han, I. D. Coombes, and B. Green, “Factors predictive of intravenous fluid administration errors in Australian surgical care wards,” Qual Saf Health Care, Vol.14, pp. 179-184, 2005.
- [15] J. C. Rooker and D. A. Gorard, “Errors of intravenous fluid infusion rates in medical inpatients,” Clin Med., Vol.7, No.5, pp. 482-485, Oct. 2007.
- [16] M. Husch, C. Sullivan, D. Rooney, C. Barnard, M. Fotis, J. Clarke, and G. Noskin, “Insights from the sharp end of intravenous medication errors: implications for infusion pump technology,” Qual Saf Health Care, Vol.14, No.2, pp. 80-86, 2005.
- [17] S. Paparella, ““Get smart” about infusion devices,” J. Emerg Nurs, Vol.35, No.1, pp. 52-54, 2008.
- [18] A. D. Harding, “Use of intravenous smart pumps for patient safety,” J Emerg Nurs, Vol.37, No.1, pp. 71-72, 2010.
- [19] L. J. Murdoch and V. L. Cameron, “Smart infusion technology: a minimum safety standard for intensive care?,” Br J Nurs, Vol.17, No.10, pp. 630-636, 2008.
- [20] L. Ragatz, Z.-Y. Jiang, C. E. Bauer, and H. Gest, “Macroscopic phototactic behavior of the purple photosynthetic bacterium,” Archives of Microbiology, Vol.163, pp. 1-6, 1995.
- [21] J. Sarik and I. Kymissis, “Lab kits using the Arduino prototyping platform,” 2010 IEEE Frontiers in Education Conf. (FIE), pp. 27-30, 2010.
- [22] Y. Kato, “Splish: A Visual Programming Environment for Arduino to Accelerate Physical Computing Experiences,” 2010 Eighth Int. Conf. on Creating Connecting and Collaborating through Computing (C5), pp. 3-10, 2010.
- [23] S. Negru, “A conceptual architecture of an Arduino-based socialemotional interactive system,” 2010 IEEE Int. Conf. on Intelligent Computer Communication and Processing (ICCP), pp. 93-98, 2010.
- [24] L. Buechley and M. Eisenberg, “The LilyPad Arduino: Toward Wearable Engineering for Everyone,” IEEE Pervasive Computing, Vol.7, No.2, pp. 12-15, 2008.
This article is published under a Creative Commons Attribution-NoDerivatives 4.0 Internationa License.
Copyright© 2012 by Fuji Technology Press Ltd. and Japan Society of Mechanical Engineers. All right reserved.