single-rb.php

JRM Vol.24 No.2 pp. 379-388
doi: 10.20965/jrm.2012.p0379
(2012)

Paper:

Technologizing and DigitalizingMedical Professional Skills for a Non-Invasive Ultrasound Theragnostic System – Technologizing and Digitalizing Kidney Stone Extraction Skills –

Norihiro Koizumi*, Deukhee Lee**, Joonho Seo*,
Takakazu Funamoto*, Akira Nomiya*, Akira Ishikawa*,
Kiyoshi Yoshinaka***, Naohiko Sugita*, Yoichiro Matsumoto*,
Yukio Homma*, and Mamoru Mitsuishi*

*School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

**Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea

***Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564, Japan

Received:
November 29, 2011
Accepted:
February 9, 2012
Published:
April 20, 2012
Abstract

We have been studying the technologizing and digitalizing skills of the medical professionals in the medical diagnostics and therapeutics. The concept of technologizing and digitalizing medical skills involves extracting functions in medical professional skills and reconstructing and implementing these extracted functions in the mechanisms, controllers, and image-processing algorithms of the medical support system. In this paper, we focus on the kidney stone extraction skills of medical professionals by utilizing robot vision technology, and discuss a methodology for technologizing and digitalizing medical diagnostic and therapeutic skills for a non-invasive ultrasound theragnostic system.

Cite this article as:
N. Koizumi, D. Lee, J. Seo, <. Funamoto, A. Nomiya, A. Ishikawa, <. Yoshinaka, N. Sugita, Y. Matsumoto, <. Homma, and M. Mitsuishi, “Technologizing and DigitalizingMedical Professional Skills for a Non-Invasive Ultrasound Theragnostic System – Technologizing and Digitalizing Kidney Stone Extraction Skills –,” J. Robot. Mechatron., Vol.24, No.2, pp. 379-388, 2012.
Data files:
References
  1. [1] J. E. Kennedy et al., “High-intensity focused ultrasound: surgery of the future?,” in British Journal of Radiology, Vol.76, pp. 590-599, 2003.
  2. [2] J. G. Lynn, R. L. Zwemer, A. J. Chick, and A. E. Miller, “A new method for the generation and use of focused ultrasound in experimental biology,” in J. Gen. Physiol., Vol.26, pp. 179-193, 1942.
  3. [3] T. Ikeda, S. Yoshizawa, M. Tosaki, J. S. Allen, S. Takagi, N. Ohta, T. Kitamura, and Y. Matsumoto, “Cloud Cavitation Control for Lithotripsy Using High Intensity Focused Ultrasound,” in Ultrasound Med Biol, Vol.32, No.9, pp. 1383-1397, 2006.
  4. [4] F. Wu, Z. L. Wang, Z. Zhang et al., “Acute biological effects of high-intensity focused ultrasound on H22 liver tumours in vivo,” in Chin. Ultrasound Med., Vol.13, No.3, 1997.
  5. [5] G. Tu, T. Y. Qiao, and S. He, “An experimental study on highintensity focused ultrasound in the treatment of VX-2 rabbit kidney tumours,” in Chin. J. Urol., Vol.20, No.8, 1999.
  6. [6] F. Wu, W. Z. Chen, J. Bai, J. Z. Zou, Z. L. Wang, H. Zhu, and Z. B. Wang, “Pathological changes in malignant carcinoma treated with high-intensity focused ultrasound,” in Ultrasound Med. Biol. Vol.27, No.8, pp. 1099-1106, 2001.
  7. [7] J. E. Kennedy et al., “High-intensity focused ultrasound for the treatment of liver tumours,” in Ultrasound Med. Biol., Vol.42, pp. 931-935, 2004.
  8. [8] T. Yoshikawa and K. Henmi, “Modeling of human hand link structure from optical motion capture data,” in Experimental Robotics VIII (in the new STAR series: Springer Tracts in Advanced Robotics), Bruno Siciliano and Paolo Dario (Eds.), Springer, pp. 351-360, 2003.
  9. [9] M. Higashimori, K. Utsumi, Y. Omoto, and M. Kaneko, “Dynamic manipulation inspired by the handling of a pizza peel,” in IEEE Trans. on Robotics, Vol.25, pp. 829-838, 2009.
  10. [10] N. Miyata, M. Kouchi, T. Kurihara, and M. Mochimaru, “Modeling of human hand link structure from optical motion capture data,” in Proc. of the 2004 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pp. 2129-2135, 2004.
  11. [11] H. Mayer, F. Gomez, D. Wierstra, I. Nagy, A. Knoll and J. Schmidhuber, “A system for robotic heart surgery that learns to tie knots using Recurrent Neural Networks,” in Proc. of the 2006 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pp. 543-548, 2006.
  12. [12] G. Zong, Y. Hu, D. Li, and X. Sun, “Visually Servoed Suturing for Robotic Micro Surgical Keratoplasty,” in Proc. of the 2006 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pp. 2358-2363, 2006.
  13. [13] N. Koizumi, S. Warisawa, M. Nagoshi, H. Hashizume, and M. Mitsuishi, “Construction methodology for a remote ultrasound diagnostic system,” in IEEE Trans. on Robotics, Vol.25, pp. 522-538, 2009.
  14. [14] N. Koizumi, T. Tsurumi, S. Warisawa, H. Hashizume, and M. Mitsuishi, “Probe positioning support utilizing shoulder model for ultrasound diagnosis,” in Proc. of 2006 IEEE/RSJ Int. Conf. Intelligent Robotics and Systems, Vol.1, pp. 155-161, 2006.
  15. [15] N. Koizumi, J. Seo, Y. Suzuki, D. Lee, K. Ota, A. Nomiya, S. Yoshizawa, K. Yoshinaka, N. Sugita, H. Homma, Y. Matsumoto, and M. Mitsuishi, “A control framework for the non-invasive ultrasound theragnostic system,” in Proc. of 2009 IEEE/RSJ Int. Conf. Intelligent Robotics and Systems, pp. 4511-4516, 2009.
  16. [16] J. A. McAteer, J. C. Williams, A. P. Evan, R. O. Cleveland, J. V. Cauwelaert, M. R. Bailey, and D. A. Lifshitz, “Ultracal-30 gypsum artificial stones for research on the mechanisms of stone breakage in shock wave lithotripsy,” in Urol Res, Vol.33, pp. 429-434, 2005.
  17. [17] N. Koizumi, J. Seo, D. Lee, T. Funamoto, A. Nomiya, K. Yoshinaka, N. Sugita, H. Homma, Y. Matsumoto, and M. Mitsuishi, “Robust kidney stone tracking for a non-Invasive ultrasound theragnostic system – Servoing performance and safety enhancement –,” in Proc. of the 2011 IEEE Int. Conf. on Robotics and Automation, pp. 2443-2450, 2011.
  18. [18] V. R. Singh and S. Singh, “Ultrasonic parameters of renal calculi,” in Proc. of the 20th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology society, Vol.20, pp. 862-864, 1998.

*This site is desgined based on HTML5 and CSS3 for modern browsers, e.g. Chrome, Firefox, Safari, Edge, Opera.

Last updated on Aug. 09, 2020